OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 7 — Jul. 1, 1998
  • pp: 1767–1776

Identification of illuminant and object colors: heuristic-based algorithms

Qasim Zaidi  »View Author Affiliations


JOSA A, Vol. 15, Issue 7, pp. 1767-1776 (1998)
http://dx.doi.org/10.1364/JOSAA.15.001767


View Full Text Article

Enhanced HTML    Acrobat PDF (403 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In everyday scenes, from perceived colors of objects and terrains, observers can simultaneously identify objects across illuminants and identify the nature of the light, e.g., as sunlight or cloudy. As a formal problem, identifying objects and illuminants from the color information provided by sensor responses is underdetermined. It is shown how the problem can be simplified considerably by the empirical result that chromaticities of sets of objects under one illuminant are approximately affine transformations of the chromaticities under spectrally different illuminants. Algorithms that use the affine nature of the correlation as a heuristic can identify objects of identical spectral reflectance across scenes lit simultaneously or successively by different illuminants. The relative chromaticities of the illuminants are estimated as part of the computation. Because information about objects and illuminants is useful in many different tasks, it would be more advantageous for the visual system to use such algorithms to extract both sorts of information from retinal signals than to discount either automatically at an early neural stage.

© 1998 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(150.0150) Machine vision : Machine vision
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling

History
Original Manuscript: January 30, 1998
Revised Manuscript: March 4, 1998
Manuscript Accepted: February 24, 1998
Published: July 1, 1998

Citation
Qasim Zaidi, "Identification of illuminant and object colors: heuristic-based algorithms," J. Opt. Soc. Am. A 15, 1767-1776 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-7-1767


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912). Reprinted in Color Res. Appl. 20, 70–75 (1995). [CrossRef]
  2. E. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971). [CrossRef] [PubMed]
  3. E. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983). [CrossRef] [PubMed]
  4. G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982). [CrossRef] [PubMed]
  5. J. L. Dannemiller, “Computational approaches to color constancy: adaptive and ontogenetic considerations,” Psychol. Rev. 96, 255–266 (1989). [CrossRef] [PubMed]
  6. M. H. Brill, “Image segmentation by object color: a unifying framework and connection to color constancy,” J. Opt. Soc. Am. A 7, 2041–2049 (1990). [CrossRef] [PubMed]
  7. A. Valberg, B. Lange-Malecki, “‘Colour constancy,’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990). [CrossRef]
  8. G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993). [CrossRef]
  9. G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994). [CrossRef]
  10. G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoretical studies,” Color Res. Appl. 21, 87–96 (1996). [CrossRef]
  11. M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992). [CrossRef] [PubMed]
  12. M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995). [CrossRef] [PubMed]
  13. J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.
  14. H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).
  15. J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976). [CrossRef]
  16. D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998). [CrossRef]
  17. D. Jameson, L. Hurvich, “Essay concerning color constancy,” Ann. Rev. Psychol. 40, 1–22 (1989). [CrossRef]
  18. J. E. Hopcroft, D. P. Huttenlocher, P. C. Wayner, “Affine invariants for model-based recognition,” in Geometric Invariance in Computer Vision, J. L. Mundy, A. Zisserman, eds. (MIT Press, Cambridge, Mass., 1992), pp. 355–374.
  19. R. G. Ketchum, The Tongass: Alaska’s Vanishing Rain Forest (Aperture Foundation, New York, 1987).
  20. R. G. Ketchum, The Legacy of Wilderness: The Photographs of Robert Glenn Ketchum (Aperture Foundation, New York, 1993).
  21. P. Sinha, E. Adelson, “Recovering reflectance and illumination in a world of painted polyhedra,” in Proceedings of the Fourth International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1993), pp. 156–163.
  22. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 700 nm,” Vision Res. 15, 161–171 (1975). [CrossRef] [PubMed]
  23. G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding, and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983). [CrossRef]
  24. Q. Zaidi, “Decorrelation of L- and M-cone signals,” J. Opt. Soc. Am. A 14, 3430–3431 (1997). [CrossRef]
  25. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef] [PubMed]
  26. M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  27. Q. Zaidi, “Color and brightness induction: from Mach bands to 3-D configurations,” in Color Vision: From Molecular Genetics to Perception, K. Gegenfurtner, L. Sharpe, eds. (Cambridge U. Press, New York, to be published).
  28. G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980). [CrossRef]
  29. L. Maloney, B. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef] [PubMed]
  30. M. D’Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993). [CrossRef]
  31. M. D’Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993). [CrossRef]
  32. M. D’Zmura, G. Iverson, “Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 11, 2389–2400 (1994). [CrossRef]
  33. S. Tominaga, B. A. Wandell, “Standard surface-reflectance model and illuminant estimation,” J. Opt. Soc. Am. 6, 576–584 (1989). [CrossRef]
  34. M. D’Zmura, G. Iverson, B. Singer, “Probabilistic color constancy,” in Geometric Representations of Perceptual Phenomena. Papers in Honor of Tarow Indow’s 70th Birthday, R. D. Luce, M. D’Zmura, D. Hoffman, G. Iverson, A. K. Romney, eds. (Erlbaum, Hillsdale, N.J., 1995), pp. 187–202.
  35. D. H. Brainard, W. T. Freeman, “Bayesian color constancy,” J. Opt. Soc. Am. A 14, 1393–1411 (1997). [CrossRef]
  36. D. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 30, 5–36 (1990). [CrossRef]
  37. G. D. Finalyson, “Color in perspective,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 1034–1038 (1996). [CrossRef]
  38. D. P. Huttenlocher, S. Ullman, “Object recognition using alignment,” in Proceedings of the 1st International Conference on Computer Vision (IEEE Computer Society Press, Los Alamitos, Calif., 1987), pp. 102–111.
  39. D. P. Huttenlocher, S. Ullman, “Recognizing solid objects by alignment with an image,” Int. J. Comput. Vision 5, 195–212 (1990). [CrossRef]
  40. A. H. Taylor, G. P. Kerr, “The distribution of energy in the visible spectrum of daylight,” J. Opt. Soc. Am. 31, 3 (1941). [CrossRef]
  41. J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993). [CrossRef]
  42. J. L. Dannemiller, “Rank ordering of photoreceptor catches from objects are nearly illumination invariant,” Vision Res. 33, 131–137 (1993). [CrossRef] [PubMed]
  43. D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London Ser. B 250, 116–121 (1994).
  44. Q. Zaidi, B. Spehar, J. S. DeBonet, “Color constancy in variegated scenes: the role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997). [CrossRef]
  45. Q. Zaidi, B. Spehar, J. S. DeBonet, “Adaptation to textured chromatic fields,” J. Opt. Soc. Am. A 15, 23–32 (1998). [CrossRef]
  46. E. W. Jin, S. K. Shevell, “Color memory and color constancy,” J. Opt. Soc. Am. A 13, 1981–1991 (1996). [CrossRef]
  47. L. E. Arend, “How much does illuminant affect unattributed colors?” J. Opt. Soc. Am. 10, 2134–2147 (1993). [CrossRef]
  48. L. E. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986). [CrossRef] [PubMed]
  49. D. H. Brainard, W. A. Brunt, J. S. Spiegle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997). [CrossRef]
  50. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964). [CrossRef]
  51. D. B. Judd, D. L. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964). [CrossRef]
  52. L. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986). [CrossRef] [PubMed]
  53. J. S. DeBonet, Q. Zaidi, “Temporal and spatial frequency analysis of motion-energy and feature-tracking,” Invest. Ophthalmol. Visual Sci. S36, 253 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited