OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 7 — Jul. 1, 1998
  • pp: 1896–1908

Measurement of smoothed Wigner phase-space distributions for small-angle scattering in a turbid medium

A. Wax and J. E. Thomas  »View Author Affiliations


JOSA A, Vol. 15, Issue 7, pp. 1896-1908 (1998)
http://dx.doi.org/10.1364/JOSAA.15.001896


View Full Text Article

Enhanced HTML    Acrobat PDF (485 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study Wigner phase-space distributions W(x, p) in position (x) and momentum (p) for light undergoing multiple small-angle scattering in a turbid medium. Smoothed Wigner phase-space distributions are measured by using a heterodyne technique that achieves position and momentum resolution determined by the width and the diffraction angle of the local oscillator beam. The sample consists of 5.7-µm-radius polystyrene spheres suspended in a water–glycerol mixture. The momentum distribution of the transmitted light is found to contain a ballistic peak, a narrow diffractive pedestal, and a broad background. The narrow diffractive pedestal is found to decay more slowly than the ballistic peak as the concentration of scatterers is increased. The data are in excellent agreement with a simple theoretical model that explains the behavior of the narrow pedestal by including multiple diffractive scattering and treating large-angle scattering as a loss.

© 1998 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(110.7050) Imaging systems : Turbid media
(170.1650) Medical optics and biotechnology : Coherence imaging
(290.4210) Scattering : Multiple scattering
(290.5820) Scattering : Scattering measurements

History
Original Manuscript: October 15, 1997
Revised Manuscript: January 16, 1998
Manuscript Accepted: February 4, 1998
Published: July 1, 1998

Citation
A. Wax and J. E. Thomas, "Measurement of smoothed Wigner phase-space distributions for small-angle scattering in a turbid medium," J. Opt. Soc. Am. A 15, 1896-1908 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-7-1896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995). [CrossRef]
  2. M. G. Raymer, C. Cheng, D. M. Toloudis, M. Anderson, M. Beck, “Propagation of Wigner coherence functions in multiple scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 236–238.
  3. D. F. McAlister, M. Beck, L. Clarke, A. Mayer, M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995). [CrossRef] [PubMed]
  4. S. John, G. Pang, Y. Yang, “Optical coherence propagation and imaging in a multiple scattering medium,” J. Biomed. Opt. 1, 180–191 (1996). [CrossRef] [PubMed]
  5. E. P. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  6. M. Hillery, R. F. O’Connel, M. O. Scully, E. P. Wigner, “Distribution functions in physics: fundamentals,” Phys. Rep. 106, 121–167 (1984). [CrossRef]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  8. J. A. Izatt, M. D. Kulkerni, K. Kobayashi, M. S. Sivak, J. K. Barton, A. J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News 8(5), 41–47, 65 (1997). [CrossRef]
  9. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  10. D. A. de Wolf, J.-K. Pack, “Wave-kinetic numerical approach to propagation of optical beams,” J. Opt. Soc. Am. A 3, 532–535 (1986);J.-K. Pack, D. A. de Wolf, “Wave-kinetic numerical approach to propagation of optical beams. II. Two canonical problems,” J. Opt. Soc. Am. A 3, 1766–1771 (1986). [CrossRef]
  11. For a review see M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227–1238 (1986). [CrossRef]
  12. C. Iaconis, I. A. Walmsley, “Direct measurement of the two-point field correlation function,” Opt. Lett. 21, 1783–1785 (1996). [CrossRef] [PubMed]
  13. A. Wax, J. E. Thomas, “Optical heterodyne imaging and Wigner phase space distributions,” Opt. Lett. 21, 1427–1429 (1996). [CrossRef] [PubMed]
  14. A. Wax, J. E. Thomas, “Heterodyne measurement of Wigner phase space distributions in turbid media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 238–242.
  15. M. Beck, M. E. Anderson, M. Raymer, “Imaging through scattering media using pulsed homodyne detection,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 257–260.
  16. A. Schmidt, R. Corey, P. Saulnier, “Imaging through random media by use of low-coherence optical heterodyning,” Opt. Lett. 20, 404–406 (1995). [CrossRef] [PubMed]
  17. A. Ya. Polishchuk, R. R. Alfano, “Fermat photons in turbid media: an exact analytic solution for most favorable paths—a step toward optical tomography,” Opt. Lett. 20, 1937–1939 (1995). [CrossRef] [PubMed]
  18. L. T. Perelman, J. Wu, I. Itzkan, M. S. Feld, “Photon migration in turbid media using path integrals,” Phys. Rev. Lett. 72, 1341–1344 (1994);L. T. Perelman, J. Wu, I. Itzkan, Y. Wang, R. R. Dasari, M. S. Feld, “Photon paths in turbid media: theory and experimental observation,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 153–155. [CrossRef] [PubMed]
  19. M. J. Yadlowsky, J. M. Schmidt, R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995). [CrossRef] [PubMed]
  20. The mean square beat is positive definite and takes the form of a smoothed Wigner distribution. See N. D. Cartwright, “A non-negative Wigner-type distribution,” Physica (Utrecht) 83A, 210–212 (1976).
  21. H. P. Yuen, V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177–179 (1983). [CrossRef] [PubMed]
  22. This method has been used in light beating spectroscopy. See H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics VIII, E. Wolf, ed. (North-Holland, New York, 1970), Chap. 3, pp. 133–200.
  23. This method has been used by G. L. Abbas, V. W. S. Chan, T. K. Yee, “A dual detector optical heterodyne receiver for local oscillator noise suppression,” J. Lightwave Technol. 3, 1110–1112 (1985). [CrossRef]
  24. See, for example, V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965); A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966); S. Cohen, “Heterodyne detection: phase front alignment, beam spot size, and detector uniformity,” Appl. Opt. 14, 1953–1959 (1975); A. L. Migdall, B. Roop, Y. C. Zheng, J. E. Hardis, Gu Jun Xia, “Use of heterodyne detection to measure optical transmittance over a wide range,” Appl. Opt. 29, 5136–5144 (1990). [CrossRef] [PubMed]
  25. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
  26. The idea of making measurements of Wigner distributions in this regime was suggested to us by R. J. Glauber, Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (personal communication, May1996).
  27. Yu. N. Barabanenkov, “On the spectral theory of radiation transport equations,” Sov. Phys. JETP 29, 679–684 (1969).
  28. A. Zardecki, S. A. W. Gerstl, “Multi-Gaussian phase function model for off-axis laser beam scattering,” Appl. Opt. 26, 3000–3004 (1987). [CrossRef] [PubMed]
  29. A. Ishimaru, Y. Kuga, R. Cheung, K. Shimizu, “Scattering and diffusion of a beam wave in randomly distributed scatterers,” J. Opt. Soc. Am. 73, 131–136 (1983). [CrossRef]
  30. J. Cooper, P. Zoller, “Radiative transfer equations in broad-band, time-varying fields,” Astrophys. J. 277, 813–819 (1984). [CrossRef]
  31. See, for example, A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vols. I and II.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited