OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 7 — Jul. 1, 1998
  • pp: 1918–1931

Boundary integral equations for a two-dimensional simulator of a photon scanning tunneling microscope

Kazuo Tanaka, Masahiro Tanaka, and Tetsuya Omoya  »View Author Affiliations


JOSA A, Vol. 15, Issue 7, pp. 1918-1931 (1998)
http://dx.doi.org/10.1364/JOSAA.15.001918


View Full Text Article

Enhanced HTML    Acrobat PDF (826 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Boundary integral equations called guided-mode extracted integral equations are applied to simulations of a two-dimensional photon scanning tunneling microscope (2D-PSTM) for an incident TE mode (s polarization). The method presented is global. Complete and rigorous integral equations for a given configuration of the 2D-PSTM are derived. They can be solved numerically by the conventional boundary-element method with high accuracy. To confirm numerical results, three universal laws, i.e., the optical theorem, the energy conservation law, and the reciprocity relation, are derived. Physical characteristics of the interaction between the probe tip and the near field are investigated in detail by using numerical simulations. Many important and interesting physical properties of the 2D-PSTM can be simulated in detail by using the proposed method.

© 1998 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(180.5810) Microscopy : Scanning microscopy
(260.2110) Physical optics : Electromagnetic optics
(260.6970) Physical optics : Total internal reflection

History
Original Manuscript: October 16, 1997
Revised Manuscript: January 27, 1998
Manuscript Accepted: February 2, 1998
Published: July 1, 1998

Citation
Kazuo Tanaka, Masahiro Tanaka, and Tetsuya Omoya, "Boundary integral equations for a two-dimensional simulator of a photon scanning tunneling microscope," J. Opt. Soc. Am. A 15, 1918-1931 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-7-1918


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
  2. M. Ohtsu, “Photon scanning tunneling microscope and related technologies,” Oyo Buturi 65, 2–12 (1996) (in Japanese).
  3. M. A. Paesler, P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications (Wiley, New York, 1996).
  4. J. M. Vigoureux, C. Girard, D. Courjon, “General principle of scanning tunneling microscope,” Opt. Lett. 14, 1039–1041 (1989). [CrossRef] [PubMed]
  5. L. Salomon, F. De Fornel, J. P. Goudonnet, “Simple-tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009–2015 (1991). [CrossRef]
  6. A. Roberts, “Small-hole coupling of radiation into a near field probe,” J. Appl. Phys. 70, 4045–4049 (1991). [CrossRef]
  7. W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991). [CrossRef]
  8. D. Van Labeke, D. Barchiesi, “Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992). [CrossRef]
  9. D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993). [CrossRef]
  10. D. Van Labeke, D. Barchiesi, F. Baida, “Optical characterization of nanosources used in scanning near-field optical microscopy,” J. Opt. Soc. Am. A 12, 695–703 (1995). [CrossRef]
  11. D. Van Labeke, F. Baida, D. Barchiesi, D. Courjon, “A theoretical model for the inverse scanning tunneling optical microscope,” Opt. Commun. 114, 470–480 (1995). [CrossRef]
  12. J. Cites, M. F. Sanhadasa, C. C. Sung, R. C. Reddick, R. J. Warmack, T. L. Ferrell, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. 71, 7–10 (1992). [CrossRef]
  13. K. Jang, W. Jhe, “Nonglobal model for a near-field optical microscope using diffraction of the optical near-field,” Opt. Lett. 21, 236–238 (1996). [CrossRef] [PubMed]
  14. C. Girard, M. Spajer, “Model for reflection near field optical microscopy,” Appl. Opt. 29, 3726–3733 (1990). [CrossRef] [PubMed]
  15. L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994). [CrossRef]
  16. J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. J. Judkins, “Near-field optical detection of asperities in dielectric surfaces,” J. Opt. Soc. Am. A 12, 501–512 (1995). [CrossRef]
  17. J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. J. Judkins, “Numerical analysis of a two-dimensional near-field probe,” Ultramicroscopy 57, 251–256 (1995). [CrossRef]
  18. H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multiple scattering,” Opt. Commun. 132, 170–178 (1996). [CrossRef]
  19. C. Girard, D. Courjon, “Model for scanning tunneling optical microscopy: a microscopic self-consistent approach,” Phys. Rev. B 42, 9340–9349 (1990). [CrossRef]
  20. B. Labani, C. Girard, D. Courjon, D. Van Labeke, “Optical interaction between a dielectric tip and a nanometric lattice: implications for near-field microscopy,” J. Opt. Soc. Am. B 7, 936–943 (1990). [CrossRef]
  21. C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study on real space,” Phys. Rev. B 49, 11344–11351 (1994). [CrossRef]
  22. C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14467–14473 (1994). [CrossRef]
  23. O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995). [CrossRef] [PubMed]
  24. O. J. F. Martin, C. Girard, A. Dereux, “Dielectric versus topographic contrast in near-field microscopy,” J. Opt. Soc. Am. A 13, 1801–1808 (1996). [CrossRef]
  25. J.-J. Greffet, “Scattering of s-polarized electromagnetic waves by a 2D obstacle near an interface,” Opt. Commun. 72, 20–24 (1989). [CrossRef]
  26. R. Carminati, J.-J. Greffet, “Two dimensional simulation of photon scanning tunneling microscope. Concept of transfer function,” Opt. Commun. 116, 316–321 (1995). [CrossRef]
  27. R. Carminati, J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12, 2716–2725 (1995). [CrossRef]
  28. F. de Fornel, P. M. Adam, L. Salomon, J. P. Goudonnet, A. Sentenac, R. Carminati, J.-J. Greffet, “Analysis of image formation with a photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 35–45 (1996). [CrossRef]
  29. J. C. Weeber, F. de Fornel, J. P. Goudonnet, “Computation of the field diffracted by a local surface defect: application to tip–sample interaction in the photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 944–951 (1996). [CrossRef]
  30. S. I. Bozhevolnyi, E. A. Bozhevolnaya, S. Bernstein, “Theoretical model for phase conjunction of optical near fields,” J. Opt. Soc. Am. A 12, 2645–2654 (1995). [CrossRef]
  31. S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, S. Bernstein, “Self-consistent model for photon tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror,” J. Opt. Soc. Am. A 13, 2381–2392 (1996). [CrossRef]
  32. A. Castiaux, A. Dereux, J. Virneron, C. Girard, O. J. F. Martin, “Electric fields in two-dimensional models of near-field optical microscope tip,” Ultramicroscopy 60, 1–9 (1995). [CrossRef]
  33. A. Castiaux, A. Dereux, J. Virneron, C. Girard, “Electrodynamics in complex systems: application to near-field probing of optical microresonators,” Phys. Rev. E 54, 5752–5760 (1996). [CrossRef]
  34. A. Madrazo, R. Carminati, M. Nieto-Vesperinas, J.-J. Greffet, “Polarization effects in the optical interaction between a nanoparticle and a corrugated surface: implications for apertureless near-field microscopy,” J. Opt. Soc. Am. A 15, 109–119 (1998). [CrossRef]
  35. K. Tanaka, M. Kojima, “New boundary integral equations for computer-aided design of dielectric waveguide circuits,” J. Opt. Soc. Am. A 6, 667–674 (1989). [CrossRef]
  36. K. Tanaka, M. Tanaka, H. Tashima, H. Ootera, Y. Yoshino, “New integral equation method for CAD of open waveguide bends,” Radio Sci. 28, 1219–1227 (1993). [CrossRef]
  37. K. Tanaka, M. Tanaka, “Computer-aided design of dielectric waveguide bends by the boundary-element methods based on guided-mode extracted integral equations,” J. Opt. Soc. Am. A 13, 1362–1368 (1996). [CrossRef]
  38. M. Tanaka, K. Tanaka, “Boundary integral equations for computer aided design of near field optics,” Trans. IEICE Jpn. J79-C-I, 101–108 (1996) (in Japanese).
  39. M. Tanaka, K. Tanaka, “Boundary integral equations for computer-aided design and simulations of near-field optics: two-dimensional optical manipulator,” J. Opt. Soc. Am. A 15, 101–108 (1998). [CrossRef]
  40. R. C. Reddick, R. J. Warmack, T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989). [CrossRef]
  41. R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61, 3669–3677 (1990). [CrossRef]
  42. P. G. Petropoulos, G. A. Kriegsmann, “Optical theorems for electromagnetic scattering by inhomogeneities in layered dielectric media,” IEEE Trans. Antennas Propag. 39, 1119–1124 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited