OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 7 — Jul. 1, 1998
  • pp: 1940–1951

X-ray imaging with submicrometer resolution employing transparent luminescent screens

Andreas Koch, Carsten Raven, Per Spanne, and Anatoly Snigirev  »View Author Affiliations


JOSA A, Vol. 15, Issue 7, pp. 1940-1951 (1998)
http://dx.doi.org/10.1364/JOSAA.15.001940


View Full Text Article

Acrobat PDF (1062 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microimaging techniques with synchrotron radiation demand fast, on-line x-ray detectors with a spatial resolution in the micrometer or submicrometer range. For this task an x-ray detector based on a transparent, i.e., nonscattering, luminescent screen has been developed. Its performance is described experimentally and theoretically. The detector consists of an Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Ce screen, microscope optics, and a low-noise CCD camera, operated at x-ray energies between 10 and 50 keV. Good image quality is achieved if the depth of focus of the optical system is matched to the x-ray absorption length or thickness of the scintillator. A spatial resolution of 0.8 μm fwhm (1000 line pairs/mm with 10% contrast) was measured by recording the interferogram of a boron fiber. First applications in phase contrast imaging and microtomography are shown.

© 1998 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(110.7440) Imaging systems : X-ray imaging
(180.7460) Microscopy : X-ray microscopy
(220.4830) Optical design and fabrication : Systems design
(260.3800) Physical optics : Luminescence
(310.6860) Thin films : Thin films, optical properties

Citation
Andreas Koch, Carsten Raven, Per Spanne, and Anatoly Snigirev, "X-ray imaging with submicrometer resolution employing transparent luminescent screens," J. Opt. Soc. Am. A 15, 1940-1951 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-7-1940


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Lindaas, M. Howells, C. Jacobsen, and A. Kalinovsky, “X-ray holographic microscopy by means of photoresist recording and atomic-force microscopic readout,” J. Opt. Soc. Am. A 13, 1788–1800 (1996).
  2. K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, and A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, and C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.
  3. Y. Okamoto, T. Oguro, I. Kashima, D. Kanishi, T. Sakurai, and T. Matsuki, “Development of the computed electroradiography: trial manufacture of digital imaging system,” Radiology 185, 395 (1992).
  4. M. D. Silver, “Towards a micrometer resolution x-ray tomographic microscope,” in X-Ray Microbeam Technology and Applications, W. Yun, ed., Proc. SPIE 2516, 135–147 (1995).
  5. R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai, and K. Takeshi, “Development of an advanced Kirkpatrick–Baez microscope,” Opt. Lett. 21, 1321–1323 (1996).
  6. B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, and M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
  7. W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, and L. Yang, “Ultrahigh-resolution x-ray topography,” Science 266, 1213–1215 (1994).
  8. R. K. Swank, “Calculation of modulation transfer functions of x-ray fluorescent screens,” Appl. Opt. 12, 1865–1870 (1973).
  9. A. Koch and C. Riekel, “X-ray video camera with 10 μm spatial resolution,” Rev. Sci. Instrum. 67, 1737–1740 (1996).
  10. H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, and H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
  11. K. Oba, M. Ito, M. Yamaguchi, and M. Tanaka, “A CsI(Na) scintillation plate with high spatial resolution,” Adv. Electron. Electron Phys. 74, 247–255 (1988).
  12. B. P. Flannery, H. W. Deckman, W. G. Roberge, and K. L. d’Amico, “Three dimensional x-ray microtomography,” Science 237, 1439–1444 (1987).
  13. H. W. Deckman, J. H. Dunsmuir, and S. M. Gruner, “Microfabrication of cellular phosphors,” J. Vac. Sci. Technol. B 7, 1832–1835 (1989).
  14. U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, and M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
  15. F. Busch, “Auflösungsvermögen einer Mikrotomographie-Kamera für Röntgen-Synchrotronstrahlung,” Ph.D. dissertation (University of Dortmund, Dortmund, Germany, 1994).
  16. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London, Ser. A 231, 91–103 (1955).
  17. M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, 1986).
  18. J. L. Halbleib, R. F. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, and M. J. Berger, “ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes,” Rep. SAND91-1634 (Sandia National Laboratories, Albuquerque, N.M., 1988).
  19. J. L. Halbleib, “Structure and operation of the ITS code system,” in Monte Carlo Transport of Electrons and Photons, T. M. Jenkins, W. R. Nelson, and A. Rindi, eds. (Plenum, New York, 1987), pp. 249–262.
  20. International Commission on Radiation Units and Measurements (ICRU), “Radiation quantities and units,” Rep. 33 (ICRU, Washington, D.C., 1980).
  21. J. C. Dainty and R. Shaw, eds. Image Science, 5th ed. (Academic, London, 1992).
  22. U. W. Arndt and D. J. Gilmore, “X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources,” J. Appl. Crystallogr. 12, 1–9 (1979).
  23. A. Koch, M. Hagelstein, A. San Miguel, A. Fontaine, and T. Ressler, “Scintillating screen-CCD camera using analog on chip storage for time-resolved x-ray absorption spectroscopy,” in Cameras and Systems for Electronic Photography and Scientific Imaging, C. N. Anagnostopoulos and M. P. Lesser, eds., Proc. SPIE 2416, 85–93 (1995).
  24. E. Breitenberger, “Scintillation spectrometer statistics,” in Progress in Nuclear Physics, O. R. Frisch, ed. (Pergamon, New York, 1955), Vol. 4, pp. 56–94.
  25. E. Dufresne, R. Brüning, M. Sutton, B. Rodricks, and G. B. Stephenson, “A statistical technique for characterizing x-ray position-sensitive detectors,” Nucl. Instrum. Methods Phys. Res. A 364, 380–393 (1995).
  26. A. Snigirev, “The recent development of Bragg–Fresnel crystal optics: experiments and applications at the ESRF,” Rev. Sci. Instrum. 66, 2053–2058 (1995).
  27. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
  28. C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, and V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett. 69, 1826–1828 (1996).
  29. P. Cloetens, R. Barrett, J. Baruchel, J. Guigney, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
  30. A. Snigirev, I. Snigireva, V. Kohn, and S. Kuznetzov, “On the requirements to the instrumentation for the new generation of the synchrotron radiation sources: beryllium windows,” Nucl. Instrum. Methods Phys. Res. A 370, 634–640 (1996).
  31. R. W. Young, B. J. Green, G. H. Camp, I. G. Gibb, and M. S. Waite, “A transparent thin-film CRT screen of Y2O2:Eu with contrast-enhancement layer,” Proc. Soc. Inf. Disp. 27, 139–143 (1986).
  32. W. B. Gilboy, “Microtomography with ionizing radiations,” Appl. Radiat. Isot. 46, 689–699 (1995).
  33. H. Chrétien, Calcul des combinaison optiques, 5th ed. (Masson, Paris, 1980).
  34. G. Black and E. H. Linfoot, “Spherical aberration and information content of optical images,” Proc. R. Soc. London, Ser. A 239, 522–540 (1957).
  35. Photometrics, “Spherical aberration in the photometrics system caused by the camera window,” Application Note (Photometrics, Tucson, Ariz., 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited