OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2097–2106

Optimal modal wave-front compensation for anisoplanatism in adaptive optics

Matthew R. Whiteley, Byron M. Welsh, and Michael C. Roggemann  »View Author Affiliations


JOSA A, Vol. 15, Issue 8, pp. 2097-2106 (1998)
http://dx.doi.org/10.1364/JOSAA.15.002097


View Full Text Article

Enhanced HTML    Acrobat PDF (331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine how modal aberration measurements degraded by turbulence-induced anisoplanatism may be used to optimally conjugate atmospheric phase aberrations. By examining the form of the aperture-averaged mean square residual phase error, we show that atmospheric compensation is suboptimal when the measured coefficients from off-axis or finite-altitude guide stars are applied directly. The optimal compensation is obtained only when conjugate phase coefficients are estimated, given the guide-star measurements and knowledge of the spatial correlation of the on-axis and measured phase coefficients, by use of a minimum-mean-square-error (MMSE) estimator. The form of this estimator is outlined, thus motivating the need to quantify the spatial cross correlation of the Zernike coefficients of the phase aberrations. With a knowledge of the modal cross correlation, we show that wave-front compensation performance can be enhanced by use of the MMSE estimator over use of the beacon measurements directly for all orders of correction. For high-order off-axis natural-guide-star correction, equivalent imaging performance is obtained at a beacon offset 10% larger than when beacon measurements are used directly. For high-order laser-guide-star correction, equivalent imaging performance is obtained at laser-guide-star altitudes 20% lower when the MMSE estimator is employed.

© 1998 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics

History
Original Manuscript: November 26, 1997
Revised Manuscript: April 14, 1998
Manuscript Accepted: April 16, 1998
Published: August 1, 1998

Citation
Matthew R. Whiteley, Byron M. Welsh, and Michael C. Roggemann, "Optimal modal wave-front compensation for anisoplanatism in adaptive optics," J. Opt. Soc. Am. A 15, 2097-2106 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-8-2097

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited