OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2097–2106

Optimal modal wave-front compensation for anisoplanatism in adaptive optics

Matthew R. Whiteley, Byron M. Welsh, and Michael C. Roggemann  »View Author Affiliations


JOSA A, Vol. 15, Issue 8, pp. 2097-2106 (1998)
http://dx.doi.org/10.1364/JOSAA.15.002097


View Full Text Article

Acrobat PDF (331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine how modal aberration measurements degraded by turbulence-induced anisoplanatism may be used to optimally conjugate atmospheric phase aberrations. By examining the form of the aperture-averaged mean square residual phase error, we show that atmospheric compensation is suboptimal when the measured coefficients from off-axis or finite-altitude guide stars are applied directly. The optimal compensation is obtained only when conjugate phase coefficients are estimated, given the guide-star measurements and knowledge of the spatial correlation of the on-axis and measured phase coefficients, by use of a minimum-mean-square-error (MMSE) estimator. The form of this estimator is outlined, thus motivating the need to quantify the spatial cross correlation of the Zernike coefficients of the phase aberrations. With a knowledge of the modal cross correlation, we show that wave-front compensation performance can be enhanced by use of the MMSE estimator over use of the beacon measurements directly for all orders of correction. For high-order off-axis natural-guide-star correction, equivalent imaging performance is obtained at a beacon offset 10% larger than when beacon measurements are used directly. For high-order laser-guide-star correction, equivalent imaging performance is obtained at laser-guide-star altitudes 20% lower when the MMSE estimator is employed.

© 1998 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics

Citation
Matthew R. Whiteley, Byron M. Welsh, and Michael C. Roggemann, "Optimal modal wave-front compensation for anisoplanatism in adaptive optics," J. Opt. Soc. Am. A 15, 2097-2106 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-8-2097


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Foy and A. Labeyrie, “Feasibility of adaptive telescopes with laser probe,” Astron. Astrophys. 152, 129–131 (1985).
  2. L. A. Thompson and C. S. Gardner, “Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature 328, 229–231 (1987).
  3. C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, and H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature 353, 141–143 (1991).
  4. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered light from a laser guide star,” Nature 353, 144–146 (1991).
  5. C. S. Gardner, B. M. Welsh, and L. A. Thompson, “Design and performance analysis of adaptive optical telescopes using laser guide stars,” Proc. IEEE 78, 1721–1743 (1990).
  6. D. Korff, G. Dryden, and R. P. Leavitt, “Isoplanicity: the translation invariance of the atmospheric Green’s function,” J. Opt. Soc. Am. 65, 1321–1330 (1975).
  7. D. L. Fried, “Varieties of isoplanatism,” in Imaging Through the Atmosphere, J. C. Wyant, ed., Proc. SPIE 75, 20–29 (1976).
  8. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982).
  9. G. A. Tyler, “Wave-front compensation for imaging with off-axis guide stars,” J. Opt. Soc. Am. A 11, 339–346 (1994).
  10. B. M. Welsh and C. S. Gardner, “Effects of turbulence-induced anisoplanatism on the imaging performance of adaptive-astronomical telescopes using laser guide stars,” J. Opt. Soc. Am. A 8, 69–80 (1991).
  11. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
  12. P. H. Hu, J. Stone, and T. Stanley, “Application of Zernike polynomials to atmospheric propagation problems,” J. Opt. Soc. Am. A 6, 1595–1608 (1989).
  13. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
  14. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
  15. J. Y. Wang and J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 78–87 (1978).
  16. G. Dai, “Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen–Loève functions,” J. Opt. Soc. Am. A 12, 2182–2193 (1995).
  17. J. Stone, P. H. Hu, S. P. Mills, and S. Ma, “Anisoplanatic effects in finite-aperture optical systems,” J. Opt. Soc. Am. A 11, 347–357 (1994).
  18. N. Takato and I. Yamaguchi, “Spatial correlation of Zernike phase-expansion coefficients for atmospheric turbulence with finite outer scale,” J. Opt. Soc. Am. A 12, 958–963 (1995).
  19. G. Molodij and G. Rousset, “Angular correlation of Zernike polynomials for a laser guide star in adaptive optics,” J. Opt. Soc. Am. A 14, 1949–1966 (1997).
  20. G. A. Tyler, “Merging: a new method for tomography through random media,” J. Opt. Soc. Am. A 11, 409–424 (1994).
  21. R. J. Sasiela, “Wave-front correction by one or more synthetic beacons,” J. Opt. Soc. Am. A 11, 379–393 (1994).
  22. B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994).
  23. M. A. Von Bokern, R. N. Paschall, and B. M. Welsh, “Modal control for and adaptive optics system using LQG compensation,” Comput. Elect. Eng. 18, 421–433 (1992).
  24. G. C. Valley and S. M. Wandzura, “Spatial correlation of phase-expansion coefficients for propagation through atmospheric turbulence,” J. Opt. Soc. Am. 69, 712–717 (1979).
  25. M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  26. D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, and D. McCarthy, “Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes,” J. Opt. Soc. Am. A 11, 925–945 (1994).
  27. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, Upper Saddle River, N.J., 1993).
  28. D. L. Fried and J. F. Belsher, “Analysis of fundamental limits to artificial-guide-star adaptive-optics-system performance for astronomical imaging,” J. Opt. Soc. Am. A 11, 277–287 (1994).
  29. S. Esposito, A. Riccardi, and R. Ragazzoni, “Focus anisoplanatism effects on tip–tilt compensation for adaptive optics with use of a sodium laser beacon as a tracking reference,” J. Opt. Soc. Am. A 13, 1916–1923 (1996).
  30. R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, 5th ed. (Macmillan, New York, 1995).
  31. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966).
  32. M. R. Whiteley, M. C. Roggemann, and B. M. Welsh, “Temporal properties of the Zernike expansion coefficients of turbulence-induced phase aberrations for aperture and source motion,” J. Opt. Soc. Am. A 15, 993–1005 (1998).
  33. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, New York, 1981), Vol. XIX, pp. 283–376.
  34. D. M. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8, 1568–1573 (1991).
  35. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965).
  36. S. E. Troxel, B. M. Welsh, and M. C. Roggemann, “Off-axis optical transfer function calculations in an adaptive-optics system by means of a diffraction calculation for weak index fluctuations,” J. Opt. Soc. Am. A 11, 2100–2111 (1994).
  37. J. D. H. Pilkington, “Artificial guide stars for adaptive imaging,” Nature 330, 116 (1987).
  38. M. S. Belen’kii, “Fundamental limitation in adaptive optics: how to eliminate it? A full aperture tilt measurement technique with a laser guide star,” in Adaptive Optics in Astronomy, M. A. Ealey and F. Merkle, eds., Proc. SPIE 2201, 321–323 (1994).
  39. M. S. Belen’kii, “Full aperture tilt measurement technique with a laser guide star,” in Atmospheric Propagations and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE 2471, 289–300 (1995).
  40. M. S. Belen’kii, “Tilt angular correlation and tilt sensing techniques with a laser guide star,” in Optics in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing, A. D. Devir, A. Kohnle, and C. Werner, eds., Proc. SPIE 2956, 206–217 (1996).
  41. G. A. Tyler, “Bandwidth considerations for tracking through turbulence,” J. Opt. Soc. Am. A 11, 358–367 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited