OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2146–2155

Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams

R. Simon and N. Mukunda  »View Author Affiliations


JOSA A, Vol. 15, Issue 8, pp. 2146-2155 (1998)
http://dx.doi.org/10.1364/JOSAA.15.002146


View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the Iwasawa decomposition theorem for the group Sp(2, R) in a form particularly suited to first-order optics, and we exploit it to develop a uniform description of the shape-invariant propagation of several families of optical beams. Both coherent and partially coherent beams are considered. We analyze the Hermite–Gaussian beam as an example of the fully coherent case. For the partially coherent case, we treat the Gaussian Schell-model beams and the recently discovered twisted Gaussian Schell-model beams, both of which are axially symmetric, and also the axially nonsymmetric Gori–Guattari beams. The key observation is that by judicious choice of a free-scale parameter available in the Iwasawa decomposition, appropriately in each case, the one potentially nontrivial factor in the decomposition can be made to act trivially. Invariants of the propagation process are discussed. Shape-invariant propagation is shown to be equivalent to invariance under fractional Fourier transformation.

© 1998 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(260.0260) Physical optics : Physical optics
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: December 5, 1997
Revised Manuscript: March 30, 1998
Manuscript Accepted: March 31, 1998
Published: August 1, 1998

Citation
R. Simon and N. Mukunda, "Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams," J. Opt. Soc. Am. A 15, 2146-2155 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-8-2146


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, Lasers (Oxford U. Press, Oxford, UK, 1986), Chap. 17.
  2. H. Bacry, M. Cadilhac, “The metaplectic group and Fourier optics,” Phys. Rev. A 23, 2533–2536 (1981);M. Nazarathy, J. Shamir, “First order systems— a canonical operator representation: lossless systems,” J. Opt. Soc. Am. A 72, 356–364 (1982). [CrossRef]
  3. E. C. G. Sudarshan, N. Mukunda, R. Simon, “Realization of first order optical systems using thin lenses,” Opt. Acta 32, 855–872 (1985). [CrossRef]
  4. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965). [CrossRef]
  5. R. Simon, N. Mukunda, “Bargmann invariant and the geometry of the Gouy effect,” Phys. Rev. Lett. 70, 880–883 (1993);R. Simon, N. Mukunda, “Iwasawa decomposition for SU (1, 1) and the Gouy effect for squeezed states,” Opt. Commun. 95, 39–45 (1993); G. S. Agarwal, R. Simon, “An experiment for the study of the Gouy effect for the squeezed vacuum,” Opt. Commun. 100, 411–414 (1993). [CrossRef] [PubMed]
  6. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995), Chap. 5.
  7. B. E. A. Saleh, “Intensity distribution due to a partially co- herent field and the Collett–Wolf equivalence theorem in the Fresnel zone,” Opt. Commun. 30, 135–138 (1979). [CrossRef]
  8. P. D. Santis, F. Gori, G. Guattari, C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979);W. H. Carter, M. Bertolotti, “An analysis of the far-field coherence and radiant intensity of light scattered from liquid crystals,” J. Opt. Soc. Am. 68, 329–333 (1978). [CrossRef]
  9. J. T. Foley, M. S. Zubairy, “The directionality of Gaussian Schell-model beams,” Opt. Commun. 26, 297–300 (1978). [CrossRef]
  10. A. T. Friberg, R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982). [CrossRef]
  11. H. Weber, “Wave optical analysis of the phase space analyzer,” J. Mod. Opt. 39, 543–559 (1992). [CrossRef]
  12. J. Serna, P. M. Mejias, R. Martinez-Herrero, “Beam quality dependence on the coherence length of Gaussian Schell-model fields propagating through ABCD optical systems,” J. Mod. Opt. 39, 625–635 (1992). [CrossRef]
  13. R. Gase, “The multimode laser radiation as a Gaussian Schell-model beam,” J. Mod. Opt. 38, 1107–1115 (1991). [CrossRef]
  14. R. Martinez-Herrero, P. M. Mejias, “Expansion of the cross-spectral density of general fields and its applications to beam characterization,” Opt. Commun. 94, 197–202 (1992). [CrossRef]
  15. R. Gase, “Methods of quantum mechanics applied to partially coherent light beams,” J. Opt. Soc. Am. A 11, 2121–2129 (1994). [CrossRef]
  16. R. Simon, N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993). [CrossRef]
  17. R. Simon, K. Sundar, N. Mukunda, “Twisted Gaussian Schell-model beams: I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993). [CrossRef]
  18. K. Sundar, R. Simon, N. Mukunda, “Twisted Gaussian Schell-model beams: II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017–2023 (1993). [CrossRef]
  19. A. T. Friberg, E. Tervonen, J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994). [CrossRef]
  20. D. Ambrosini, V. Bagini, F. Gori, M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41, 1391–1399 (1994). [CrossRef]
  21. R. Simon, A. T. Friberg, E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems,” Pure Appl. Opt. 5, 331–343 (1996). [CrossRef]
  22. F. Gori, G. Guattari, “A new type of optical fields,” Opt. Commun. 48, 7–12 (1983). [CrossRef]
  23. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Generalized rays in first order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984). [CrossRef]
  24. A. T. Friberg, J. Turunen, “Imaging of Gaussian Schell-model sources,” J. Opt. Soc. Am. A 5, 713–720 (1988). [CrossRef]
  25. R. Simon, N. Mukunda, E. C. G. Sudarshan, “Partially coherent beams and a generalized abcd-law,” Opt. Commun. 65, 322–328 (1988). [CrossRef]
  26. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic, New York, 1978), pp. 257–264, 401–407; S. Lang, SL2(R) (Addison-Wesley, Reading, Mass., 1975), p. 83.
  27. H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional orders and their optical interpretation,” Opt. Commun. 101, 163–169 (1993). [CrossRef]
  28. D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993);H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
  29. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
  30. G. S. Agarwal, R. Simon, “A simple realization of fractional Fourier transformation and relation to harmonic oscillator Green’s function,” Opt. Commun. 110, 23–26 (1994). [CrossRef]
  31. R. Simon, N. Mukunda, “The two-dimensional symplectic and metaplectic groups and their universal cover,” in Symmetries in Science VI, B. Gruber, ed. (Plenum, New York, 1993), pp. 659–689.
  32. D. Gloge, D. Marcuse, “Formal quantum theory of light rays,” J. Opt. Soc. Am. 59, 1629–1631 (1969). [CrossRef]
  33. D. Marcuse, Light Transmission Optics (Van NostrandReinhold, New York, 1972), Chap. 3.
  34. H. H. Arsenault, B. Macukow, “Factorization of the transfer matrix for symmetrical optical systems,” J. Opt. Soc. Am. 73, 1350–1359 (1983);B. Macukow, H. H. Arsenault, “Matrix decompositions for nonsymmetric optical systems,” J. Opt. Soc. Am. 73, 1360–1366 (1983). [CrossRef]
  35. S. Abe, J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994);J. Shamir, N. Cohen, “Root and power transformations in optics,” J. Opt. Soc. Am. A 12, 2415–2423 (1995). [CrossRef] [PubMed]
  36. K. Sundar, N. Mukunda, R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995). [CrossRef]
  37. E. Collett, E. Wolf, “Is complete coherence necessary for the generation of highly directional light beams?” Opt. Lett. 2, 27–29 (1978). [CrossRef]
  38. E. Wolf, E. Collett, “Partially coherent sources which produce the same intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978). [CrossRef]
  39. Y. Li, E. Wolf, “Radiation from anisotropic Gaussian Schell-model sources,” Opt. Lett. 7, 256–258 (1982). [CrossRef] [PubMed]
  40. F. Gori, S. Vicalvi, M. Santarsiero, R. Borghi, “Shape-invariance range of a light beam,” Opt. Lett. 21, 1205–1207 (1996). [CrossRef] [PubMed]
  41. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited