OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2199–2207

Systematic eigenvalue approach to crystal optics: an analytic alternative to the geometric ellipsoid model

M. J. Gunning and R. E. Raab  »View Author Affiliations

JOSA A, Vol. 15, Issue 8, pp. 2199-2207 (1998)

View Full Text Article

Acrobat PDF (293 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The linear birefringences, optic axes, and linear eigenpolarizations that are familiar features of light propagation in transparent optically inactive anisotropic crystals are fully explained by Fresnel’s ellipsoid model or the related indicatrix ellipsoid. However, these models cannot account for circular birefringence and the linear birefringences of Lorentz and Jones. All birefringences can, nevertheless, be explained by an appropriate multipole eigenvalue theory, of which the electric-dipole description presented in this paper is the formal basis of the ellipsoid models. This description is analytic in form, as opposed to the mainly geometric treatment of the ellipsoid schemes, and sets the latter in the context of a systematic multipole approach for describing other birefringences. Furthermore, it offers certain new insights and results.

© 1998 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(350.5500) Other areas of optics : Propagation

M. J. Gunning and R. E. Raab, "Systematic eigenvalue approach to crystal optics: an analytic alternative to the geometric ellipsoid model," J. Opt. Soc. Am. A 15, 2199-2207 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. B. Graham and R. E. Raab, “On the Jones birefringence,” Proc. R. Soc. London, Ser. A 390, 73–90 (1983).
  2. E. B. Graham and R. E. Raab, “Light propagation in cubic and other anisotropic crystals,” Proc. R. Soc. London Ser. A 430, 593–614 (1990).
  3. P. N. Argyres, “Theory of the Faraday and Kerr effects in ferromagnetics,” Phys. Rev. 97, 334–345 (1955).
  4. C. Graham and R. E. Raab, “Eigenvector approach to the evaluation of the Jones N matrices of nonabsorbing crystalline media,” J. Opt. Soc. Am. A 11, 2137–2144 (1994).
  5. E. B. Graham and R. E. Raab, “Electric dipole effects in magnetic crystals,” J. Appl. Phys. 69, 2549–2551 (1991).
  6. E. B. Graham and R. E. Raab, “A theory in the electric quadrupole-magnetic dipole approximation of birefringences in antiferromagnetic crystals,” Ferroelectrics 162, 161–171 (1994).
  7. H. A. Lorentz, “Concerning the relation between the velocity of propagation of light and the density and composition of media,” Verh. K. Akad. Wet. 18, 1 (1878); also in H. A. Lorentz, Collected Papers, P. Zeeman and A. D. Fokker, eds. (Nijhoff, The Hague, 1936), Vol. 2, pp. 1–119.
  8. H. A. Lorentz, “Double refraction by regular crystals,” Proc. K. Ned. Acad. Wet. 24, 333–339 (1922); also in H. A. Lorentz, Collected Papers, P. Zeeman and A. D. Fokker, eds. (Nijhoff, The Hague, 1936), Vol. 3, pp. 314–320.
  9. J. Pastrnak and L. E. Cross, “The optical anisotropy of cubic nickel-iodine boracite due to quadrupole transitions,” Phys. Status Solidi B 44, 313–325 (1971).
  10. J. Pastrnak and K. Vedam, “Optical anisotropy of silicon single crystals,” Phys. Rev. B 3, 2567–2571 (1971).
  11. F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), pp. 552, 583, 589.
  12. E. U. Condon and F. Seitz, “Lorentz double refraction in the regular system,” J. Opt. Soc. Am. 22, 393–401 (1932).
  13. R. Clark Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-matrices,” J. Opt. Soc. Am. 38, 671–685 (1948).
  14. J. W. Gibbs, “Notes on the electromagnetic theory of light. No. II—on refraction in perfectly transparent media which exhibit the phenomena of circular birefringence,” Am. J. Sci. 23, 460–476 (1882).
  15. H. Nakano and H. Kimura, “Quantum statistical-mechanical theory of optical activity,” J. Phys. Soc. Jpn. 27, 519–535 (1969).
  16. A. D. Buckingham and M. B. Dunn, “Optical activity of oriented molecules,” J. Chem. Soc. A 1988–1991 (1971).
  17. L. D. Barron and A. D. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Molec. Phys. 20, 1111–1119 (1971).
  18. R. E. Raab and J. H. Cloete, “An eigenvalue theory of circular birefringence and dichroism in a non-magnetic chiral medium,” J. Electromagn. Waves Appl. 8, 1073–1089 (1994).
  19. E. B. Graham and R. E. Raab, “Non-reciprocal optical rotation in cubic antiferromagnetics,” Philos. Mag. B 64, 267–274 (1991).
  20. T. A. Maldonado and T. K. Gaylord, “Accurate method to determine the eigenstates of polarization in gyrotropic media,” Appl. Opt. 28, 2075–2086 (1989).
  21. E. B. Graham, J. Pierrus, and R. E. Raab, “Multipole moments and Maxwell’s equations,” J. Phys. B 25, 4673–4684 (1992).
  22. L. Rosenfeld, Theory of Electrons (North-Holland, Amsterdam, 1951), Chap. 2.
  23. F. N. H. Robinson, Macroscopic Electromagnetism (Pergamon, Oxford, UK, 1973), pp. 56–62.
  24. A. D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” in Intermolecular Forces, J. O. Hirschfelder, ed., Adv. Chem. Phys. 12, 107–142 (1967).
  25. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge U. Press, Cambridge, UK, 1982), p. 76.
  26. I. M. B. de Figueiredo and R. E. Raab, “A molecular theory of new differential light scattering effects in a fluid,” Proc. R. Soc. London Ser. A 375, 425–441 (1981).
  27. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 142.
  28. R. R. Birss, Symmetry and Magnetism, 2nd ed. (North-Holland, Amsterdam, 1966).
  29. S. I. Pekar, Crystal Optics and Additional Light Waves (Benjamin/Cummings, Menlo Park, Calif., 1983), p. XV.
  30. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 73, 75, 79.
  31. E. B. Graham and R. E. Raab, “Magnetic effects in antiferromagnetic crystals in the electric quadrupole-magnetic dipole approximation,” Philos. Mag. B 66, 269–284 (1992).
  32. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 14.
  33. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, UK, 1985), Appendix H, p. 271.
  34. T. A. Maldonado and T. K. Gaylord, “Electrooptic effect calculations: simplified procedure for arbitrary cases,” Appl. Opt. 27, 5051–5066 (1988).
  35. G. N. Ramachandran and S. Ramaseshan, “Crystal optics,” in Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1961), Vol. XXV/1, p. 63.
  36. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, 2nd ed. (Springer-Verlag, Berlin, 1984), pp. 167–173.
  37. D. E. Gray, American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), pp. 6–115.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited