OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2216–2227

Linear models for spectral reflectance functions over the mid-wave and long-wave infrared

Glenn Healey and Luis Benites  »View Author Affiliations


JOSA A, Vol. 15, Issue 8, pp. 2216-2227 (1998)
http://dx.doi.org/10.1364/JOSAA.15.002216


View Full Text Article

Acrobat PDF (359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the use of linear models for IR spectral reflectance functions. Linear models have been studied extensively for the visible wavelengths and form the basis of several approaches to estimating surface properties from color images. The IR analysis is performed with measured spectral reflectance functions for 394 samples of natural and man-made materials. The mid-wave (3–5 μm) and long-wave (8–12.5 μm) atmospheric windows of the IR spectrum are considered separately. Since materials tend to have stronger spectral features over the 8–12.5 μm range, linear models for the long-wave IR require more parameters than for the mid-wave IR, in order to obtain the same accuracy. We show that a six-parameter linear model provides an excellent approximation for mid-wave (3–5 μm) reflectance functions and that a nine-parameter linear model provides a satisfactory approximation for long-wave (8–12.5 μm) reflectance functions.

© 1998 Optical Society of America

OCIS Codes
(150.0150) Machine vision : Machine vision
(160.4760) Materials : Optical properties
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(330.1690) Vision, color, and visual optics : Color

Citation
Glenn Healey and Luis Benites, "Linear models for spectral reflectance functions over the mid-wave and long-wave infrared," J. Opt. Soc. Am. A 15, 2216-2227 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-8-2216


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sensing Environ. 44, 127–143 (1993).
  2. R. W. Basedow, D. C. Armer, and M. E. Anderson, “HYDICE system: implementation and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, and L. R. Illing, eds., Proc. SPIE 2480, 258–267 (1995).
  3. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369 (1964).
  4. L. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
  5. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
  6. E. L. Krinov, “Spectral reflectance properties of natural formations,” Technical translation TT-439, Tech. Rep. (National Research Council of Canada, Ottawa, 1947).
  7. D. Nickerson, “Spectrophotometric data for a collection of Munsell samples,” Tech. Rep. (U.S. Department of Agriculture, Washington, D.C., 1957).
  8. B. Wandell, “The synthesis and analysis of color images,” IEEE Trans. Pattern. Anal. Mach. Intell. PAMI-9, 2–13 (1987).
  9. D. Marimont and B. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9, 1905–1913 (1992).
  10. G. Healey, S. Shafer, and L. Wolff, eds., Physics-Based Vision: Principles and Practice, COLOR (Jones and Bartlett, Boston, 1992).
  11. G. Healey and Q.-T. Luong, “Color in computer vision: recent progress,” in Handbook of Pattern Recognition and Computer Vision, C. H. Chen, L. F. Pau, and P. S. P. Wang, eds. (World Scientific, River Edge, N.J., 1997).
  12. L. Maloney and B. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
  13. M. D’Zmura and G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
  14. M. D’Zmura and G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
  15. G. Healey and D. Slater, “Global color constancy: recognition of objects by use of illumination-invariant properties of color distributions,” J. Opt. Soc. Am. A 11, 3003–3010 (1994).
  16. G. Healey and L. Wang, “Illumination-invariant recognition of texture in color images,” J. Opt. Soc. Am. A 12, 1877–1883 (1995).
  17. D. Slater and G. Healey, “The illumination-invariant recognition of 3D objects using local color invariants,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 206–210 (1996).
  18. G. Healey and A. Jain, “Retrieving multispectral satellite images using physics-based invariant representations,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 842–848 (1996).
  19. S. L. Valley, ed., Handbook of Geophysics and Space Environments, (U.S. Air Force Cambridge Research Lab, Bedford, Mass., 1965).
  20. K. Nassau, The Physics and Chemistry of Color: the Fifteen Causes of Color (Wiley, New York, 1983).
  21. P. Slater, Remote Sensing, Optics and Optical Systems (Addison-Wesley, Reading, Mass., 1980).
  22. R. Siegel and J. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, New York, 1981).
  23. G. R. Hunt and R. L. Vincent, “The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes,” J. Geophys. Res. 73, 6039–6046 (1968).
  24. M. J. Bartholomew, A. B. Kahle, and G. Hoover, “Infrared spectroscopy (2.3–20 μm) for the geological interpretation of remotely-sensed multispectral thermal infrared data,” Int. J. Remote Sens. 10, 529–544 (1989).
  25. G. H. Golub and C. F. van Loan, Matrix Computations, (Johns Hopkins U. Press, Baltimore, Md., 1983).
  26. J. Salisbury, L. Walter, N. Vergo, and D. D’Aria. Infrared (2.1–25 μm) Spectra of Minerals, (Johns Hopkins U. Press, Baltimore, Md., 1991).
  27. J. Salisbury, B. Hapke, and J. Eastes, “Usefulness of weak bands in mid-infrared remote sensing of particulate planetary surfaces,” J. Geophys. Res. 92, 702–710 (1987).
  28. R. Aines and G. Rossman, “Water in minerals? A peak in the infrared,” J. Geophys. Res. 89, 4059–4071 (1984).
  29. M. Hass and G. Sutherland, “The infra-red spectrum and crystal structure of gypsum,” Proc. R. Soc. London 236, 427–445 (1956).
  30. V. C. Farmer, ed., The Infrared Spectra of Minerals, Monograph 4 (Mineralogical Society, London, 1974).
  31. L. Walter and J. Salisbury, “Spectral characterization of igneous rocks in the 8 to 12 μm region,” J. Geophys. Res. 94, 9203–9213 (1989).
  32. P. A. Estep-Barnes, “Infrared spectroscopy,” in Physical Methods in Determinative Mineralogy, 2nd ed., J. Zussman, ed. (Academic, New York, 1977), pp. 529–603.
  33. J. Thompson and J. Salisbury, “The mid-infrared reflectance of mineral mixtures (7–14 μm),” Remote Sensing Environ. 45, 1–13 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited