OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 15, Iss. 9 — Sep. 1, 1998
  • pp: 2373–2382

Twist phase in Gaussian-beam optics

R. Simon and N. Mukunda  »View Author Affiliations


JOSA A, Vol. 15, Issue 9, pp. 2373-2382 (1998)
http://dx.doi.org/10.1364/JOSAA.15.002373


View Full Text Article

Enhanced HTML    Acrobat PDF (318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The recently discovered twist phase is studied in the context of the full ten-parameter family of partially coherent general anisotropic Gaussian Schell-model beams. It is shown that the nonnegativity requirement on the cross-spectral density of the beam demands that the strength of the twist phase be bounded from above by the inverse of the transverse coherence area of the beam. The twist phase as a two-point function is shown to have the structure of the generalized Huygens kernel or Green’s function of a first-order system. The ray-transfer matrix of this system is exhibited. Wolf-type coherent-mode decomposition of the twist phase is carried out. Imposition of the twist phase on an otherwise untwisted beam is shown to result in a linear transformation in the ray phase space of the Wigner distribution. Though this transformation preserves the four-dimensional phase-space volume, it is not symplectic and hence it can, when impressed on a Wigner distribution, push it out of the convex set of all bona fide Wigner distributions unless the original Wigner distribution was sufficiently deep into the interior of the set.

© 1998 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: December 15, 1997
Revised Manuscript: April 14, 1998
Manuscript Accepted: May 1, 1998
Published: September 1, 1998

Citation
R. Simon and N. Mukunda, "Twist phase in Gaussian-beam optics," J. Opt. Soc. Am. A 15, 2373-2382 (1998)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-15-9-2373


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Simon, N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993). [CrossRef]
  2. A. T. Friberg, E. Tervonen, J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994). [CrossRef]
  3. D. Ambrosini, V. Bagini, F. Gori, M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41, 1391–1399 (1994). [CrossRef]
  4. R. Simon, K. Sundar, N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993). [CrossRef]
  5. K. Sundar, R. Simon, N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017–2023 (1993). [CrossRef]
  6. R. Simon, A. T. Friberg, E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems,” Pure Appl. Opt. 5, 331–343 (1996). [CrossRef]
  7. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  8. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Gaussian pure states in quantum mechanics and the symplectic group,” Phys. Rev. A 37, 3028–3038 (1988). [CrossRef] [PubMed]
  9. R. Gase, “Methods of quantum mechanics applied to partially coherent light beams,” J. Opt. Soc. Am. A 11, 2121–2129 (1994). [CrossRef]
  10. E. P. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  11. M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978); M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
  12. M. Nazarathy, J. Shamir, “First order systems—a canonical operator representation: lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982); E. C. G. Sudarshan, N. Mukunda, R. Simon, “Realization of first order optical systems using thin lenses,” Opt. Acta 32, 855–872 (1985). [CrossRef]
  13. H. Bacry, M. Cadilhac, “The metaplectic group and Fourier optics,” Phys. Rev. A 23, 2533–2536 (1981); V. Guillemin, S. Sternberg, Symplectic Techniques in Physics (Cambridge U. Press, Cambridge, UK, 1984); R. G. Littlejohn, “The semiclassical evolution of wave packets,” Phys. Rep. 138, 193–291 (1986); R. Simon, N. Mukunda, “The two-dimensional symplectic and metaplectic groups and their universal cover,” in Symmetries in Science, B. Gruber, ed. (Plenum, New York, 1993), Vol. VI, pp. 659–689; R. Simon, N. Mukunda, “Bargmann invariant and the geometry of the Gouy effect,” Phys. Rev. Lett. 70, 880–883 (1993). [CrossRef] [PubMed]
  14. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985). [CrossRef] [PubMed]
  15. K. Sundar, N. Mukunda, R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995). [CrossRef]
  16. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Gaussian Wigner distributions in quantum mechanics and optics,” Phys. Rev. A 36, 3868–3880 (1987). [CrossRef] [PubMed]
  17. R. Simon, N. Mukunda, B. Dutta, “Quantum-noise matrix for multimode systems: U(n) invariance squeezing, and normal forms,” Phys. Rev. A 49, 1567–1583 (1994). [CrossRef] [PubMed]
  18. R. Gase, “Representation of Laguerre–Gaussian modes by the Wigner distribution function,” IEEE J. Quantum Electron. 31, 1811–1818 (1995). [CrossRef]
  19. G. Nemes, A. E. Siegman, “Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics,” J. Opt. Soc. Am. A 11, 2257–2264 (1994). [CrossRef]
  20. B. E. A. Saleh, “Intensity distribution due to a partially coherent field and the Collett–Wolf equivalence theorem in the Fresnel zone,” Opt. Commun. 30, 135–138 (1979); J. T. Foley, M. S. Zubairy, “The directionality of Gaussian Schell-model beams,” Opt. Commun. 26, 297–300 (1978); A. T. Friberg, R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982); E. Wolf, E. Collett, “Partially coherent sources which produce the same intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978); R. Simon, E. C. G. Sudarshan, N. Mukunda, “Generalized rays in first order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984); H. Weber, “Wave optical analysis of the phase space analyzer,” J. Mod. Opt. 39, 543–559 (1992). [CrossRef]
  21. Y. Li, E. Wolf, “Radiation from anisotropic Gaussian Schell-model sources,” Opt. Lett. 7, 256–258 (1982). [CrossRef] [PubMed]
  22. F. Gori, G. Guattari, “A new type of optical fields,” Opt. Commun. 48, 7–12 (1983). [CrossRef]
  23. M. J. Bastiaans, “ABCD law for partially coherent Gaussian light propagating through first-order optical systems,” Opt. Quantum Electron. 24, 1011–1019 (1992). [CrossRef]
  24. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I. Spectra and cross-spectra of steady state sources,” J. Opt. Soc. Am. 72, 343–351 (1982); E. Wolf, G. S. Agarwal, “Coherence theory of laser resonator modes,” J. Opt. Soc. Am. A 1, 541–546 (1984). [CrossRef]
  25. F. Gori, “Collett–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980); R. Gase, “The multimode laser radiation as a Gaussian Schell-model beam,” J. Mod. Opt. 38, 1107–1115 (1991); R. Martinez-Herrero, P. M. Mejias, “Expansion of the cross-spectral density of general fields and its applications to beam characterization,” Opt. Commun. 94, 197–202 (1992). [CrossRef]
  26. J. Schwinger, “On angular momentum,” in Quantum Theory of Angular Momentum, L. C. Biedenharn, H. Van Dam, eds. (Academic, New York, 1965), pp. 229–279.
  27. M. Selvadoray, M. Sanjay Kumar, R. Simon, “Photon distribution in two-mode squeezed coherent states with complex displacement and squeeze parameters,” Phys. Rev. A 49, 4957–4967 (1994). [CrossRef] [PubMed]
  28. S. Danakas, P. K. Aravind, “Analogies between two optical systems (photon beam splitters and laser beams) and two quantum systems (the two-dimensional oscillator and the two-dimensional hydrogen atom),” Phys. Rev. A 45, 1973–1977 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited