OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 15, Iss. 9 — Sep. 1, 1998
  • pp: 2391–2403

Forerunners in bigyrotropic materials

Igor Egorov and Sten Rikte  »View Author Affiliations

JOSA A, Vol. 15, Issue 9, pp. 2391-2403 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (405 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Forerunners (precursors) in linear, temporally dispersive, bigyrotropic materials are investigated with time-domain techniques. Bigyrotropic materials are characterized by 12 constitutive parameters (integral kernels). Specifically, the four susceptibility dyadics are all gyrotropic with a common gyrotropic axis. Pulse propagation along this axis is analyzed with dispersive (noncoupling) wave splitting and complex, time-dependent field vectors. Two numerical examples illustrating the method are presented.

© 1998 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.2030) Physical optics : Dispersion
(320.5550) Ultrafast optics : Pulses

Original Manuscript: December 23, 1997
Revised Manuscript: May 19, 1998
Manuscript Accepted: May 20, 1998
Published: September 1, 1998

Igor Egorov and Sten Rikte, "Forerunners in bigyrotropic materials," J. Opt. Soc. Am. A 15, 2391-2403 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sommerfeld, “Über die Fortpflanzung des Lichtes in dispergierenden Medien,” Ann. Phys. (Leipzig) 44, 177–202 (1914). [CrossRef]
  2. L. Brillouin, “Über die Fortpflanzung des Lichtes in dispergierenden Medien,” Ann. Phys. (Leipzig) 44, 203–240 (1914). [CrossRef]
  3. K. E. Oughstun, G. C. Sherman, “Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. B 5, 817–849 (1988). [CrossRef]
  4. K. E. Oughstun, G. C. Sherman, Electromagnetic Pulse Propagation in Causal Dielectrics (Springer-Verlag, Berlin, 1994).
  5. S. Shen, K. E. Oughstun, “Dispersive pulse propagation in a double-resonance Lorentz medium,” J. Opt. Soc. Am. B 6, 948–963 (1989). [CrossRef]
  6. L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).
  7. P. G. Zablocky, N. Engheta, “Transients in chiral media with single-resonance dispersion,” J. Opt. Soc. Am. A 10, 740–758 (1993). [CrossRef]
  8. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston, London, 1994).
  9. I. V. Lindell, Methods for Electromagnetic Field Analysis (Clarendon, Oxford, 1992).
  10. S. Rikte, “Sommerfeld’s forerunner in stratified isotropic and bi-isotropic media,” (Lund Institute of Technology, Department of Electromagnetic Theory, P.O. Box 118, S-211 00 Lund, Sweden, 1994).
  11. J. Fridén, G. Kristensson, “Transient external 3D excitation of a dispersive and anisotropic slab,” Inverse Probl. 13, 691–709 (1997). [CrossRef]
  12. A. Karlsson, S. Rikte, “The time-domain theory of forerunners,” J. Opt. Soc. Am. A 15, 487–502 (1998). [CrossRef]
  13. A. Karlsson, G. Kristensson, “Constitutive relations, dissipation and reciprocity for the Maxwell equations in the time domain,” J. Electromagn. Waves Appl. 6, 537–551 (1992). [CrossRef]
  14. R. Kress, Linear Integral Equations (Springer-Verlag, Berlin, 1989).
  15. A. H. Sihvola, I. V. Lindell, “Material effects in bi-anisotropic electromagnetics,” IEICE Trans. Electron. (Japan), E78-C, 1383–1390 (1995).
  16. M. M. I. Saadoun, N. Engheta, “A reciprocal phase shifter using noval pseudochiral or Ω medium,” Microwave Opt. Technol. Lett. 5, 184–187 (1992). [CrossRef]
  17. I. V. Lindell, S. A. Tretyakov, A. J. Viitanen, “Plane-wave propagation in a uniaxial chiro-omega medium,” Microwave Opt. Technol. Lett. 6, 517–520 (1993). [CrossRef]
  18. M. Norgren, S. He, “Electromagnetic reflection and transmission for a dielectric-Ω interface and a Ω slab,” Int. J. Infrared Millim. Waves 15, 1537–1554 (1994). [CrossRef]
  19. M. Norgren, S. He, “Reconstruction of the constitutive parameters for an Ω material in a rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 43, 1315–1321 (1995). [CrossRef]
  20. S. Rikte, “The theory of the propagation of TEM-pulses in dispersive bi-isotropic slabs,” Wave Motion (to be published).
  21. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Grundlehren der mathematischen Wissenschaften 256 (Springer-Verlag, Berlin, 1983).
  22. E. Beltrami, “Considerazioni idrodinamiche,” Rend. Ist. Lomb. Accad. Sci. Lett. 22, 122–131 (1889).
  23. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  24. S. A. Maksimenko, G. Y. Slepyan, A. Lakhtakia, “Gaussian pulse propagation in a linear, lossy chiral medium,” J. Opt. Soc. Am. A 14, 894–900 (1997). [CrossRef]
  25. H.-O. Kreiss, J. Lorenz, Initial-Boundary Value Problems and the Navier–Stokes Equations (Academic, San Diego, Calif., 1989).
  26. E. U. Condon, “Theories of optical rotatory power,” Rev. Mod. Phys. 9, 432–457 (1937). [CrossRef]
  27. C. Eftimiu, L. W. Pearson, “Guided electromagnetic waves in chiral media,” Radio Sci. 24, 351–359 (1989). [CrossRef]
  28. E. J. Post, Formal Structure of Electromagnetics (North-Holland, Amsterdam, 1962).
  29. G. Kristensson, S. Rikte, “Transient wave propagation in reciprocal bi-isotropic media at oblique incidence,” J. Math. Phys. (New York) 34, 1339–1359 (1993). [CrossRef]
  30. P. Drude, Lehrbuch der Optik (S. Hirzel, Leipzig, 1900).
  31. C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited