OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 1 — Jan. 1, 1999
  • pp: 58–70

Simulation of scanning laser techniques for optical imaging of blood-related intrinsic signals

Martin Stetter and Klaus Obermayer  »View Author Affiliations

JOSA A, Vol. 16, Issue 1, pp. 58-70 (1999)

View Full Text Article

Acrobat PDF (4101 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical imaging of intrinsic signals detects neural activation patterns by taking video images of the local activity-related changes in the light intensity reflected from neural tissue (intrinsic signals). At red light (605 nm), these signals are caused mainly by local variations of the tissue absorption following deoxygenation of blood. We characterize the image generation process during optical imaging by Monte Carlo simulations of light propagation through a homogeneous model tissue equipped with a local absorber. Conventional video imaging and scanning laser imaging are compared. We find that, compared with video imaging, scanning laser techniques drastically increase both the contrast and the lateral resolution of optical recordings. Also, the maximum depth up to which the signals can be detected is increased by roughly a factor of 2 when scanning laser optical imaging is used. Further, the radial profile of the diffuse-reflectance pattern for each pixel is subject to changes that correlate with the depth of the absorber within the tissue. We suggest a detection geometry for the online measurement of these radial profiles that can be realized by modifying a standard scanning laser ophthalmoscope.

© 1999 Optical Society of America

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.7050) Scattering : Turbid media

Martin Stetter and Klaus Obermayer, "Simulation of scanning laser techniques for optical imaging of blood-related intrinsic signals," J. Opt. Soc. Am. A 16, 58-70 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. G. Blasdel and G. Salama, “Voltage-sensitive dyes reveal a modular organization in monkey striate cortex,” Nature 321, 579–585 (1986).
  2. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324, 361–364 (1986).
  3. M. S. Cohen and S. Y. Bookheimer, “Localization of brain function using magnetic resonance imaging,” Trends Neurosci. 17, 268–277 (1994).
  4. L. Ostergaard, D. F. Smith, P. Vestergaard-Poulsen, S. B. Hansen, A. D. Gjedde, and C. Gyldensted, “Absolute cerebral blood-flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography,” J. Cereb. Blood Flow Metab. 18, 425–432 (1998).
  5. T. Bonhoeffer and A. Grinvald, “Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns,” Nature 353, 429–431 (1991).
  6. T. Bonhoeffer and A. Grinvald, “The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization,” J. Neurosci. 13, 4157–4180 (1993).
  7. T. Bonhoeffer, D. S. Kim, D. Malonek, D. Shoham, and A. Grinvald, “Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex,” Eur. J. Neurosci. 7, 1973–1988 (1995).
  8. D. S. Kim and T. Bonhoeffer, “Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex,” Nature 370, 370–372 (1994).
  9. G. G. Blasdel, “Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex,” J. Neurosci. 12, 3115–3138 (1992).
  10. G. G. Blasdel, “Orientation selectivity, preference, and continuity in monkey striate cortex,” J. Neurosci. 12, 3139–3161 (1992).
  11. B. Chapman, M. P. Stryker, and T. Bonhoeffer, “Development of orientation preference maps in ferret primary visual cortex,” J. Neurosci. 16, 6443–6453 (1996).
  12. S. C. Rao, L. J. Toth, and M. Sur, “Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets,” J. Comp. Neurol. 387, 358–370 (1997).
  13. W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, “Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex,” J. Neurosci. 17, 2112–2127 (1997).
  14. A. Shmuel and A. Grinvald, “Functional organization for direction of motion and its relationship to orientation maps in cat area 18,” J. Neurosci. 16, 6945–6964 (1996).
  15. M. Weliky, W. H. Bosking, and D. Fitzpatrick, “A systematic map of direction preference in primary visual cortex,” Nature 379, 725–728 (1996).
  16. T. Yoshioka, G. G. Blasdel, J. B. Levitt, and J. S. Lund, “Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex,” Cereb. Cortex 6, 297–310 (1996).
  17. T. Yoshioka, G. G. Blasdel, J. B. Levitt, and J. S. Lund, “Relation between patterns of intrinsic lateral connectivity, ocular dominance and cytochrome oxidase-reactive regions in macaque monkey striate cortex,” Cereb. Cortex 6, 297–310 (1997).
  18. K. Obermayer and G. G. Blasdel, “Geometry of orientation and ocular dominance columns in monkey striate cortex,” J. Neurosci. 13, 4114–4129 (1993).
  19. M. Hübener, D. Shoham, A. Grinvald, and T. Bonhoeffer, “Spatial relationships among three columnar systems in cat area 17,” J. Neurosci. 17, 9270–9284 (1997).
  20. A. Hess and H. Scheich, “Optical and fdg mapping of frequency-specific activity in auditory cortex,” Neuroreport 7, 2643–2647 (1996).
  21. H. R. Dinse, G. Reuter, S. M. Cords, B. Godde, T. Hilger, and T. Lenarz, “Optical imaging of cat auditory cortical organization after electrical stimulation of a multi-channel cochlear implant: differential effects of acute and chronic stimulation,” Am. J. Otol. 18, S17–S18 (1997).
  22. B. Godde, F. Spengler, and H. R. Dinse, “Associative pairing of tactile stimulation induces somatosensory cortical reorganization in rats and humans,” Neuroreport 8, 281–285 (1996).
  23. I. Gödecke and T. Bonhoeffer, “Development of identical orientation maps for two eyes without common visual experience,” Nature 379, 251–254 (1996).
  24. I. Goedecke, D.-S. Kim, T. Bonhoeffer, and W. Singer, “Development of orientation preference maps in area 18 of kitten visual cortex,” Eur. J. Neurosci. 9, 1754–1762 (1997).
  25. R. Malach, Y. Amir, M. Harel, and A. Grinvald, “Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex,” Proc. Natl. Acad. Sci. USA 90, 10469–10473 (1993).
  26. R. Malach, R. B. Tootell, and D. Malonek, “Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horntal connections in squirrel monkey area v2.nizo,” Cereb. Cortex 4, 151–165 (1994).
  27. Z. F. Kisvarday, D. S. Kim, U. T. Eysel, and T. Bonhoeffer, “Relationship between lateral inhibitory connections and the topography of the orientation map in cat visual cortex,” Eur. J. Neurosci. 6, 1619–1632 (1994).
  28. A. Das and C. D. Gilbert, “Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex,” Nature 375, 780–784 (1995).
  29. M. B. Dalva, M. Weliky, and L. C. Katz, “Relationships between local synaptic connections and orientation domains in primary visual cortex,” Neuron 19, 871–880 (1997).
  30. T. Bonhoeffer and A. Grinvald, “Optical imaging based on intrinsic signals: the methodology,” in Brain Mapping: The Methods, A. Toga and J. C. Maziotta, eds. (Academic, San Diego, Calif., 1996), pp. 55–97.
  31. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
  32. D. H. Hubel and T. N. Wiesel, “Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London, Ser. B 198, 1–59 (1977).
  33. M. J. Hawken, A. J. Parker, and J. S. Lund, “Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the old world monkey,” J. Neurosci. 8, 3541–3548 (1988).
  34. J. E. W. Mayhew and Y. Zheng, “A model for the intrinsic image signal and an evaluation of the methodology of intrinsic image signal analysis,” Tech. Rep. 109 (Artificial Intelligence Vision Research Unit AIVRU, University of Sheffield, Sheffield, UK, 1996).
  35. H. S. Orbach, L. B. Cohen, and A. Grinvald, “Optical mapping of electrical activity in rat somatosensory and visual cortex,” J. Neurosci. 5, 1886–1895 (1985).
  36. B. A. MacVicar and D. Hochman, “Imaging of synaptically evoked intrinsic optical signals in hippocampal slices,” J. Neurosci. 11, 1458–1469 (1991).
  37. N. R. Kreisman, J. C. LaManna, S.-C. Liao, E. R. Teh, and J. R. Alcala, “Light transmittance as an index of cell volume in hippocampus slices: optical differences of interfaced and submerged positions,” Brain Res. 693, 179–186 (1995).
  38. R. D. Andrew and B. A. MacVicar, “Imaging cell volume changes and neuronal excitation in the hippocampal slice,” Neuroscience 62, 371–383 (1994).
  39. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
  40. R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. 28, 488–492 (1981).
  41. F. W. Fitzke, H. Woon, G. Timberlake, L. Robinson, J. Marshall, and A. C. Bird, “Optical modifications to a scanning laser ophthalmoscope for high magnification, narrow optical section imaging,” Lasers Light Ophthalmol. 4, 7–14 (1991).
  42. F. W. Fitzke and B. R. Masters, “Three-dimensional visualization of confocal sections of in vivo human fundus and optic nerve,” Curr. Eye Res. 12, 1015–1018 (1993).
  43. M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res. 36, 1987–1994 (1996).
  44. R.-P. Tornow, S. Beuel, and E. Zrenner, “Modifying a Rodenstock scanning laser ophthalmoscope for imaging densitometry,” Appl. Opt. 36, 5621–5629 (1997).
  45. S. Marcos, R. P. Tornow, A. E. Elsner, and R. Navarro, “Foveal cone spacing and cone photopigment density difference: objective measurement in the same subjects,” Vision Res. 37, 1909–1915 (1997).
  46. J. B. Pawley, ed., Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).
  47. R. Graaf, A. C. M. Dassel, M. H. Koelink, J. G. Aarnoudse, F. F. M. de Mul, W. G. Zijlstra, and J. Greve, “Condensed Monte Carlo simulations applied to reflectance pulse oximetry,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alvano, eds., Proc. SPIE 1888, 201–213 (1993).
  48. R. Graaf, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Arnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–435 (1993).
  49. J. M. Schmitt and K. Ben-Letaief, “Efficient Monte Carlo simulation of confocal microscopy in biological tissue,” J. Opt. Soc. Am. A 13, 952–961 (1996).
  50. M. Stetter and K. Obermayer, “Tissue optics simulations of scanning laser techniques for optical imaging,” in N. Elsner and R. Wehner, eds., New Neuroethology on the Move: Proceedings of the 26th Göttingen Neurobiology Conference 1998 (Thieme, Stuttgart, Germany, 1998), p. 779.
  51. K. Klier, “Absorption and scattering in plane parallel turbid media,” J. Opt. Soc. Am. 62, 882–885 (1972).
  52. M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
  53. B. C. Wilson and S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
  54. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
  55. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—i: predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1163–1168 (1989).
  56. K. S. Rockland and J. S. Lund, “Intrinsic laminar lattice connections in primate visual cortex,” J. Comp. Neurol. 216, 303–318 (1983).
  57. S. T. Flock, B. C. Wilson, and M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—ii: comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
  58. M. Stetter, R. A. Sendtner, F. W. Fitzke, and V. P. Gabel, “Development of a kinetic SLO microperimetry module for functional macular diagnostics,” Vision Res. 35, S43 (1995).
  59. M. Stetter, G. T. Timberlake, R. A. Sendtner, and R. H. Webb, “SLO saccade profile measurements and the effects of retinal raster size and distortion,” in Proceedings of the European Biomedical Optics Symposium, R. Birngruber and A. F. Fercher, eds., Proc. SPIE 2632, 98–109 (1995).
  60. N. P. McLoughlin and G. G. Blasdel, “Effect of wavelength on differential images of ocular dominance and orientation in monkey striate cortex,” Soc. Neurosci. Abstr. 23, 13 (1997).
  61. D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, New York, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited