OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 2400–2412

Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework

Jong Chul Ye, Kevin J. Webb, Charles A. Bouman, and R. P. Millane  »View Author Affiliations


JOSA A, Vol. 16, Issue 10, pp. 2400-2412 (1999)
http://dx.doi.org/10.1364/JOSAA.16.002400


View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Frequency-domain diffusion imaging uses the magnitude and phase of modulated light propagating through a highly scattering medium to reconstruct an image of the spatially dependent scattering or absorption coefficients in the medium. An inversion algorithm is formulated in a Bayesian framework and an efficient optimization technique is presented for calculating the maximum a posteriori image. In this framework the data are modeled as a complex Gaussian random vector with shot-noise statistics, and the unknown image is modeled as a generalized Gaussian Markov random field. The shot-noise statistics provide correct weighting for the measurement, and the generalized Gaussian Markov random field prior enhances the reconstruction quality and retains edges in the reconstruction. A localized relaxation algorithm, the iterative-coordinate-descent algorithm, is employed as a computationally efficient optimization technique. Numerical results for two-dimensional images show that the Bayesian framework with the new optimization scheme outperforms conventional approaches in both speed and reconstruction quality.

© 1999 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(290.3200) Scattering : Inverse scattering

History
Original Manuscript: January 4, 1999
Manuscript Accepted: March 31, 1999
Published: October 1, 1999

Citation
Jong Chul Ye, Kevin J. Webb, Charles A. Bouman, and R. P. Millane, "Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework," J. Opt. Soc. Am. A 16, 2400-2412 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-10-2400


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Patterson, B. Chance, B. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  2. E. M. Sevick, J. K. Frisoli, C. L. Burch, J. R. Lakowicz, “Localization of absorbers in scattering media by use of frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994). [CrossRef] [PubMed]
  3. Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–342 (1997). [CrossRef]
  4. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  5. S. Flock, M. Patterson, B. Wilson, D. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989). [CrossRef] [PubMed]
  6. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scattering imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993). [CrossRef]
  7. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulation and experiment,” J. Opt. Soc. Am. A 13, 253–266 (1996). [CrossRef]
  8. J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method with an approximate Fréchet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999). [CrossRef]
  9. J. C. Ye, R. P. Millane, K. J. Webb, T. J. Downar, “Importance of the ∇D term in frequency-resolved optical diffusion imaging,” Opt. Lett. 23, 1423–1425 (1998). [CrossRef]
  10. A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems, F. John, transl. ed. (Winston, New York, 1977).
  11. J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1983).
  12. R. Fletcher, Practical Methods of Optimization, 2nd ed. (Wiley, Chichester, UK, 1987).
  13. T. Hebert, R. Leahy, “A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors,” IEEE Trans. Med. Imaging 8, 194–202 (1989). [CrossRef] [PubMed]
  14. D. Geman, G. Reynolds, “Constrained restoration and the recovery of discontinuities,” IEEE Trans. Pattern. Anal. Mach. Intell. 14, 367–383 (1992). [CrossRef]
  15. K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35, 3447–3458 (1996). [CrossRef] [PubMed]
  16. S. S. Saquib, K. M. Hanson, G. S. Cunningham, “Model-based image reconstruction from time-resolved diffusion data,” in Medical Imaging 1997: Image Processing, K. M. Hanson, ed., Proc. SPIE3034, 369–380 (1997). [CrossRef]
  17. S. R. Arridge, M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://epubs.osa.org/opticsexpress . [CrossRef] [PubMed]
  18. H. Carfantan, A. Mohammad-Djafari, J. Idier, “A single site update algorithm for nonlinear diffraction tomography,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing IV (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 2837–2840.
  19. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, New York, 1978).
  20. K. Sauer, C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Trans. Signal Process. 41, 534–548 (1993). [CrossRef]
  21. C. A. Bouman, K. Sauer, “A unified approach to statistical tomography using coordinate descent optimization,” IEEE Trans. Image Process. 5, 480–492 (1996). [CrossRef] [PubMed]
  22. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).
  23. M. S. Patterson, J. D. Moultan, B. C. Wilson, K. W. Berndtand, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991). [CrossRef] [PubMed]
  24. M. O’Leary, D. Boas, B. Chance, A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992). [CrossRef] [PubMed]
  25. R. Aronson, N. Corngold, “The photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16, 1066–1071 (1999). [CrossRef]
  26. S. Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989). [CrossRef] [PubMed]
  27. J. S. Reynolds, S. Yeung, A. Przadka, K. J. Webb, “Optical diffusion imaging: a comparative numerical and experimental study,” Appl. Opt. 35, 3671–3679 (1996). [CrossRef] [PubMed]
  28. J. Besag, “Spatial interaction and the statistical analysis of lattice systems,” J. R. Stat. Soc. B 36, 192–236 (1974).
  29. S. S. Saquib, C. A. Bouman, K. Sauer, “ML parameter estimation for Markov random fields with applications to Bayesian tomography,” IEEE Trans. Image Process. 7, 1029–1044 (1998). [CrossRef]
  30. J. Besag, “Towards Bayesian image analysis,” J. Appl. Stat. 16, 395–407 (1989). [CrossRef]
  31. C. A. Bouman, K. Sauer, “A generalized Gaussian image model for edge-preserving map estimation,” IEEE Trans. Image Process. 2, 296–310 (1993). [CrossRef] [PubMed]
  32. D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed. (Addison-Wesley, Reading, Mass., 1989).
  33. S. R. Arridge, “Photon-measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995). [CrossRef] [PubMed]
  34. G. H. Golub, C. F. V. Loan, Matrix Computations, 2nd ed. (The Johns Hopkins U. Press, Baltimore, 1989).
  35. J. C. Adams, “mudpack: Multigrid portable fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989). [CrossRef]
  36. M. G. Erickson, J. S. Reynolds, K. J. Webb, “Comparison of sensitivity for single-source and dual-interfering-source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997). [CrossRef]
  37. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited