OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 2413–2418

Powers of transfer matrices determined by means of eigenfunctions

Tatiana Alieva and Martin J. Bastiaans  »View Author Affiliations


JOSA A, Vol. 16, Issue 10, pp. 2413-2418 (1999)
http://dx.doi.org/10.1364/JOSAA.16.002413


View Full Text Article

Enhanced HTML    Acrobat PDF (130 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The parameters of the transfer matrix describing a first-order optical system that is a cascade of k identical subsystems defined by the transfer matrix M are determined from consideration of the subsystem’s eigenfunctions. A condition for the cascade to be cyclic is derived. Particular examples of cyclic first-order optical systems are presented. Structure and properties of eigenfunctions of cyclic transforms are considered. A method of optical signal encryption by use of cyclic first-order systems is proposed.

© 1999 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(110.1650) Imaging systems : Coherence imaging
(110.6980) Imaging systems : Transforms

History
Original Manuscript: April 13, 1999
Manuscript Accepted: June 24, 1999
Published: October 1, 1999

Citation
Tatiana Alieva and Martin J. Bastiaans, "Powers of transfer matrices determined by means of eigenfunctions," J. Opt. Soc. Am. A 16, 2413-2418 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-10-2413


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Luneburg, Mathematical Theory of Optics (University of California, Berkeley, Berkeley, Calif., 1966).
  2. M. Raymer, M. Beck, D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994). [CrossRef] [PubMed]
  3. T. Alieva, F. Agullo-Lopez, “Optical wave propagation of fractal fields,” Opt. Commun. 125, 267–274 (1996). [CrossRef]
  4. T. Alieva, F. Agullo-Lopez, “Diffraction analysis of random fractal fields,” J. Opt. Soc. Am. A 15, 669–674 (1998). [CrossRef]
  5. T. Alieva, M. J. Bastiaans, “Radon–Wigner transform for optical field analysis,” in Optics and Optoelectronics, Theory, Devices and Applications, O. P. Nijhawan, A. K. Gupta, A. K. Musla, Kehar Singh, eds. (Narosa, New Delhi, 1998), Vol. 1, 132–135.
  6. D. F. V. James, G. S. Agarwal, “The generalized Fresnel transform and its application to optics,” Opt. Commun. 126, 207–212 (1996). [CrossRef]
  7. D. Stolen, “Operator methods in physical optics,” J. Opt. Soc. Am. 71, 334–341 (1981). [CrossRef]
  8. M. Nazarathy, J. Shamir, “First-order optics—a canonical operator representation: lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982). [CrossRef]
  9. C. Gomez-Reino, “GRIN optics and its application in optical connections,” Int. J. Optoelectron. 7, 607–680 (1992).
  10. T. Alieva, F. Agullo-Lopez, “Reconstruction of the optical correlation function in a quadratic refractive index medium,” Opt. Commun. 114, 161–169 (1995). [CrossRef]
  11. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980). [CrossRef]
  12. L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994). [CrossRef]
  13. D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transform and their optical implementation,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
  14. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
  15. J. Shamir, N. Cohen, “Root and power transformations in optics,” J. Opt. Soc. Am. A 12, 2415–2423 (1995). [CrossRef]
  16. M. J. Caola, “Self-Fourier functions,” J. Phys. A 24, L1143–L1144 (1991). [CrossRef]
  17. G. Cincotti, F. Gori, M. Santarsiero, “Generalized self-Fourier functions,” J. Phys. A 25, L1191–L1194 (1992). [CrossRef]
  18. A. W. Lohmann, D. Mendlovic, “Self-Fourier objects and other self-transform objects,” J. Opt. Soc. Am. A 9, 2009–2012 (1992). [CrossRef]
  19. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Self-Fourier functions and fractional Fourier transforms,” Opt. Commun. 105, 36–38 (1994). [CrossRef]
  20. T. Alieva, “On the self-fractional Fourier functions,” J. Phys. A 29, L377–L379 (1996). [CrossRef]
  21. T. Alieva, A. Barbé, “Self-fractional Fourier functions and selection of modes,” J. Phys. A 30, L211–L215 (1997). [CrossRef]
  22. T. Alieva, A. Barbé, “Self-imaging in fractional Fourier transform systems,” Opt. Commun. 152, 11–15 (1998). [CrossRef]
  23. D. Choudhury, P. N. Puntambekar, A. K. Chakraborty, “Optical synthesis of self-Fourier functions,” Opt. Commun. 119, 279–282 (1995). [CrossRef]
  24. B. Javidi, “Securing information with optical technologies,” Phys. Today 50, No. 3, 27–32 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited