## Gaussian Schell-model beams and general shape invariance

JOSA A, Vol. 16, Issue 10, pp. 2465-2475 (1999)

http://dx.doi.org/10.1364/JOSAA.16.002465

Acrobat PDF (224 KB)

### Abstract

We present two six-parameter families of anisotropic Gaussian Schell-model beams that propagate in a shape-invariant manner, with the intensity distribution continuously twisting about the beam axis. The two families differ in the sense or helicity of this beam twist. The propagation characteristics of these shape-invariant beams are studied, and the restrictions on the beam parameters that arise from the optical uncertainty principle are brought out. Shape invariance is traced to a fundamental dynamical symmetry that underlies these beams. This symmetry is the product of spatial rotation and fractional Fourier transformation.

© 1999 Optical Society of America

**OCIS Codes**

(000.3860) General : Mathematical methods in physics

(030.1640) Coherence and statistical optics : Coherence

(030.6600) Coherence and statistical optics : Statistical optics

(260.0260) Physical optics : Physical optics

(350.5500) Other areas of optics : Propagation

**Citation**

R. Simon and N. Mukunda, "Gaussian Schell-model beams and general shape invariance," J. Opt. Soc. Am. A **16**, 2465-2475 (1999)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-10-2465

Sort: Year | Journal | Reset

### References

- A. E. Siegman, Lasers (Oxford U. Press, Oxford, UK, 1986), Chap. 19.
- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995).
- F. Gori and G. Guattari, “A new type of optical fields,” Opt. Commun. 48, 7–12 (1983).
- R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993).
- A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994).
- D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41, 1391–1399 (1994).
- R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993).
- K. Sundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017–2023 (1993).
- F. Gori, V. Bagini, M. Santarsiero, F. Frezza, and G. Schettini, “Coherent and partially coherent twisting beams,” Opt. Rev. 1, 143–145 (1994).
- G. Nemes and A. E. Siegman, “Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics,” J. Opt. Soc. Am. A 11, 2257–2264 (1994).
- R. Gase, “Representation of Laguerre–Gaussian modes by the Wigner distribution function,” IEEE J. Quantum Electron. 31, 1811–1818 (1995).
- R. Simon, A. T. Friberg, and E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems,” Pure Appl. Opt. 5, 331–343 (1996).
- B. Eppich, A. T. Friberg, C. Gao, and H. Weber, “Twist of coherent fields and beam quality,” in Third International Workshop on Laser Beam and Optics Characterization, M. Morin and A. Giesen, eds., Proc. SPIE 2870, 260–267 (1996).
- A. T. Friberg, C. Gao, B. Eppich, and H. Weber, “Generation of partially coherent fields with twist,” in 10th Meeting on Optical Engineering in Israel, I. Shladov and S. R. Rotman, eds., Proc. SPIE 3110, 317–328 (1997).
- F. Gori, M. Santarsiero, and V. Borghi, “Partially coherent sources with helicoidal modes,” J. Mod. Opt. 45, 539–554 (1998).
- R. Simon and N. Mukunda, “Twist phase in Gaussian beam optics,” J. Opt. Soc. Am. A 15, 2373–2382 (1998).
- F. Gori, S. Vicalvi, M. Santarsiero, and R. Borghi, “Shape-invariance range of a light beam,” Opt. Lett. 21, 1205–1207 (1996).
- R. Simon and N. Mukunda, “Iwasawa decomposition in first order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams,” J. Opt. Soc. Am. A 15, 2146–2155 (1998).
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985).
- G. Nemes, “Measuring and handling general astigmatic beams,” in Laser Beam Characterization, P. M. Mejias, H. Weber, R. Martínez-Herrero, and A. González-Urena, eds. (Sociedad Española de Optica, Madrid, 1993), p. 325.
- G. Nemes and J. Serna, “Laser beam characterization with the use of second order moments: an overview,” in Diode Pumped Solid State Lasers: Applications and Issues, M. W. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 200.
- R. Simon and N. Mukunda, “Shape-invariant anisotropic Gaussian Schell-model beams: a complete characterization,” J. Opt. Soc. Am. A 15, 1361–1370 (1998).
- E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102, 336–350 (1993).
- E. Abramochkin and V. Volostnikov, “Spiral-type beams: optical and quantum aspects,” Opt. Commun. 125, 302–323 (1996).
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian Wigner distributions in quantum mechanics and optics,” Phys. Rev. A 36, 3868–3880 (1987).
- R. Simon, N. Mukunda and B. Dutta, “Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms,” Phys. Rev. A 49, 1567–1683 (1994).
- K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.