OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 2532–2538

Axial behavior of diffractive lenses under Gaussian illumination: complex-argument spectral analysis

Carlos J. Zapata-Rodrı́guez, Manuel Martı́nez-Corral, Pedro Andrés, and Amparo Pons  »View Author Affiliations


JOSA A, Vol. 16, Issue 10, pp. 2532-2538 (1999)
http://dx.doi.org/10.1364/JOSAA.16.002532


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a general procedure to analyze the axial-irradiance distribution generated by an unlimited diffractive lens under coherent, Gaussian illumination. The resulting on-axis diffraction pattern, which is evaluated in terms of the power complex spectrum of the Fresnel-zone transmittance, explicitly depends on the truncation parameter that we define, which evaluates the effective number of zones illuminated by the Gaussian beam. Depending on the value of this parameter, different kinds of axial behavior are observed. In particular, for moderate values a multiple-focal-shift phenomenon appears, and a simple formula for its evaluation is presented. Additionally, for low values of the truncation parameter, a focal-merge effect is observed in multifocal zone plates.

© 1999 Optical Society of America

OCIS Codes
(220.2560) Optical design and fabrication : Propagating methods

History
Original Manuscript: January 4, 1999
Revised Manuscript: May 11, 1999
Manuscript Accepted: May 11, 1999
Published: October 1, 1999

Citation
Carlos J. Zapata-Rodrı́guez, Manuel Martı́nez-Corral, Pedro Andrés, and Amparo Pons, "Axial behavior of diffractive lenses under Gaussian illumination: complex-argument spectral analysis," J. Opt. Soc. Am. A 16, 2532-2538 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-10-2532


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Feature issue on diffractive optics applications, Appl. Opt. 34, 2399–2559 (1995).
  2. Y. Ono, N. Nishida, “Holographic laser scanners using generalized zone plates,” Appl. Opt. 21, 4542–4548 (1982). [CrossRef] [PubMed]
  3. S. L. Dobson, P.-C. Sun, Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36, 4744–4748 (1997). [CrossRef] [PubMed]
  4. P. C. Lin, P.-C. Sun, L. Zhu, Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Appl. Opt. 37, 6764–6770 (1998). [CrossRef]
  5. M. Rossi, T. Hesser, “Interference effects in diffractive beam shaping elements,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DMD3-1.
  6. D. G. Greywall, “A micromechanical optical switch with a zone-plate reflector,” J. Phys. D 30, 2191–2208 (1987). [CrossRef]
  7. V. P. Koronkevich, V. P. Kiriyanov, F. I. Kokoulin, I. G. Palchikova, A. G. Poleshchuk, A. G. Sedukhin, E. G. Churin, A. M. Shcherbachenko, Y. I. Yurlov, “Fabrication of kinoform optical elements,” Optik (Stuttgart) 67, 257–266 (1984).
  8. V. Moreno, J. F. Román, J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997). [CrossRef]
  9. D. L. Dichensheets, G. S. Kino, “Micromachined scanning confocal microscope,” Opt. Lett. 21, 764–766 (1996). [CrossRef]
  10. A. Boivin, “On the theory of diffraction by concentric arrays of ring-shaped apertures,” J. Opt. Soc. Am. 42, 60–64 (1952). [CrossRef]
  11. M. Novotný, “A new series representation of the Fresnel diffraction field of axially symmetrical filters,” Opt. Acta 24, 551–565 (1977). [CrossRef]
  12. R. Chmelik, “Analytic description of wave fields in focal regions of diffractive lenses,” J. Mod. Opt. 43, 1463–1471 (1996). [CrossRef]
  13. V. P. Koronkevich, I. G. Pal’chikova, “Modern zone plates,” Optoelectron. Instrum. Data Process. 1, 86–100 (1992).
  14. X. Jiang, S. Wang, E. Bernabeu, J. Alda, “ABCD matrix and focal shift for Fresnel zone plates,” Optik (Stuttgart) 95, 16–18 (1993).
  15. Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981). [CrossRef]
  16. M. Martı́nez-Corral, C. J. Zapata-Rodrı́guez, P. Andrés, E. Silvestre, “Effective Fresnel-number concept for evaluating the relative focal shift in focused beams,” J. Opt. Soc. Am. A 15, 449–455 (1998). [CrossRef]
  17. S. De Nicola, D. Anderson, M. Lisak, “Focal shift effects in diffracted focused beams,” Pure Appl. Opt. 7, 1249–1259 (1998). [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1996), Sec. 3.4.2.
  19. C. W. McCutchen, “Generalized aperture and three-dimensional diffraction image,” J. Opt. Soc. Am. 54, 240–244 (1964). [CrossRef]
  20. M. Martı́nez-Corral, P. Andrés, J. Ojeda-Castañeda, “On-axis diffractional behavior of two-dimensional pupils,” Appl. Opt. 33, 2223–2229 (1994). [CrossRef] [PubMed]
  21. S. Wang, E. Bernabeu, J. Alda, “Unified and generalized Fresnel numbers,” Opt. Quantum Electron. 24, 1351–1358 (1992). [CrossRef]
  22. Hint: |sin(x+iy)|2=sin2(x)+sinh2(y).
  23. P. W. Milonni, J. H. Eberly, Lasers (Wiley, New York, 1988), Chap. 11.
  24. A. R. Shulman, Optical Data Processing (Wiley, New York, 1970), Chap. 9.
  25. W. H. Carter, “Focal shift and concept of effective Fresnel number for a Gaussian laser beam,” Appl. Opt. 21, 1989–1994 (1982). [CrossRef] [PubMed]
  26. D. W. Sweeney, G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34, 2469–2475 (1995). [CrossRef] [PubMed]
  27. Y. Li, “Focal shift and focal switch in dual-focus systems,” J. Opt. Soc. Am. A 14, 1297–1304 (1997). [CrossRef]
  28. M. Martı́nez-Corral, V. Climent, “Focal switch: a new effect in low-Fresnel-number systems,” Appl. Opt. 35, 24–27 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited