OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 2612–2624

Computational theory of color transparency: recovery of spectral properties for overlapping surfaces

Shigeki Nakauchi, Pertti Silfsten, Jussi Parkkinen, and Shiro Usui  »View Author Affiliations


JOSA A, Vol. 16, Issue 11, pp. 2612-2624 (1999)
http://dx.doi.org/10.1364/JOSAA.16.002612


View Full Text Article

Enhanced HTML    Acrobat PDF (628 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A computational theory of color transparency for color images containing X junctions is described. This theory is based on physical models of color transparency under conditions of additive or subtractive color mixture that describe the relationship among four colors at an X junction. Algorithms are derived for recovering transmittance and surface reflectance functions of a transparent medium from a set of sensor responses at an X junction. The algorithms are based on the ability to describe surface reflectance and transmittance functions by using a linear combination of orthogonal basis functions. We also address algorithms for determination of depth ordering of overlapping surfaces and the type of color mixture by checking the physical realizability of recovered functions.

© 1999 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling

History
Original Manuscript: January 25, 1999
Revised Manuscript: June 3, 1999
Manuscript Accepted: June 3, 1999
Published: November 1, 1999

Citation
Shigeki Nakauchi, Pertti Silfsten, Jussi Parkkinen, and Shiro Usui, "Computational theory of color transparency: recovery of spectral properties for overlapping surfaces," J. Opt. Soc. Am. A 16, 2612-2624 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-11-2612


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Metelli, “An algebraic development of the theory of perceptual transparency,” Ergonomics 13, 59–66 (1970). [CrossRef] [PubMed]
  2. F. Metelli, “The perception of transparency,” Sci. Am. 230(4), 90–98 (1974). [CrossRef] [PubMed]
  3. J. Beck, “Additive and subtractive color mixture in color transparency,” Percept. Psychophys. 23, 265–267 (1978). [CrossRef] [PubMed]
  4. J. Beck, K. Prazdny, R. Ivry, “The perception of transparency with achromatic colors,” Percept. Psychophys. 35, 407–422 (1984). [CrossRef] [PubMed]
  5. W. Gerbino, C. I. F. H. J. Stultiens, J. M. Troost, C. M. M. de Weert, “Transparent layer constancy,” J. Exp. Psychol. 16, 3–20 (1990).
  6. E. H. Adelson, P. Anandan, “Ordinal characteristics of transparency,” presented at the AAAI-90 Workshop on Qualitative Vision, Boston, Mass., July 20, 1990.
  7. B. L. Anderson, “A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions,” Perception 26, 419–454 (1997). [CrossRef] [PubMed]
  8. M. H. Brill, “Physical and informational constraints on the perception of transparency and translucency,” Computer Vision Graph. Image Process. 28, 356–362 (1984). [CrossRef]
  9. J. Beck, “The perception of surface color,” Sci. Am. 232(2), 65–75 (1975).
  10. O. Da Pos, Trasparenze, Serie Alma Mater (ICONE s.r.l., Padova, Italy, 1989).
  11. M. H. Brill, “The perception of a colored translucent sheet on a background,” Color Res. Appl. 19, 34–36 (1994).
  12. F. Faul, “Chromatic scission in perceptual transparency,” Perception 25 (Supplement), 105 (1996).
  13. F. Faul, “Theoretische und experimentale Untersuchung chromatischer Determinanten perzeptueller Transparenz,” Ph.D. dissertation (Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 1997).
  14. M. D’Zmura, P. Colantoni, K. Knoblauch, B. Laget, “Color transparency,” Perception 26, 471–492 (1997). [CrossRef] [PubMed]
  15. V. J. Chen, M. D’Zmura, “Test of a convergence model for color transparency,” Perception 27, 595–608 (1998). [CrossRef]
  16. M. D’Zmura, O. Rinner, K. Gegenfurtner, “Colour and lightness of a surface seen behind a transparent filter,” Perception 27 (Supplement), 170 (1998).
  17. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964). [CrossRef]
  18. D. B. Judd, D. L. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964). [CrossRef]
  19. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986). [CrossRef] [PubMed]
  20. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989). [CrossRef]
  21. G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980). [CrossRef]
  22. L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef] [PubMed]
  23. M. D’Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions of lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993). [CrossRef]
  24. M. D’Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions of lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993). [CrossRef]
  25. M. D’Zmura, G. Iverson, “Color constancy. III. General linear recovery of spectral descriptions of lights and surfaces,” J. Opt. Soc. Am. A 11, 2389–2400 (1994). [CrossRef]
  26. K. Takebe, S. Nakauchi, S. Usui, “A computational model for color constancy by separating reflectance and illuminant edges within a scene,” Neural Networks 9, 1405–1415 (1996). [CrossRef] [PubMed]
  27. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  28. J. D. Foley, A. Van Dam, S. K. Feiner, J. F. Hughes, Computer Graphics, Principles and Practice, 2nd ed. (Addison-Wesley, New York, 1990).
  29. F. Metelli, O. Da Pos, A. Cavedon, “Balanced and unbalanced, complete and partial transparency,” Percept. Psychophys. 38, 354–366 (1985). [CrossRef] [PubMed]
  30. M. Fukuda, S. C. Masin, “Test of balanced transparency,” Perception 23, 37–43 (1994). [CrossRef] [PubMed]
  31. M. Singh, D. D. Hoffman, “Part boundaries alter the perception of transparency,” Psychol. Sci. 9, 370–378 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited