OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 12 — Dec. 1, 1999
  • pp: 2904–2913

Modal characteristics of short-pitch photoresist gratings exhibiting zero-order diffraction anomalies

Stephen A. Coulombe and John R. McNeil  »View Author Affiliations


JOSA A, Vol. 16, Issue 12, pp. 2904-2913 (1999)
http://dx.doi.org/10.1364/JOSAA.16.002904


View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Zero-order diffraction efficiencies, in reflection, of short-pitch (pitch less than the incident wavelength), narrow-linewidth, photoresist gratings exhibit significant variations with angle of incidence. The intent of our effort was to explain these variations, which are characterized as resonance anomalies. At resonance we also have observed enhanced diffuse scattering. Modal analysis was applied to characterize the fields within the grating structure. A separate numerical method that combines effective-medium theory and waveguide mode computation was used to determine the lossy, guided-wave modes of the layered grating structure. We show that enhanced diffuse scattering is directly correlated with enhanced surface fields (order m=-1) that are associated with coupling of the incident field into guided-wave modes in the presence of the grating. Under certain conditions anti-guided-wave behavior in the grating is evident. Applications to scatterometry and surface characterization are suggested.

© 1999 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements

History
Original Manuscript: March 17, 1999
Revised Manuscript: August 11, 1999
Manuscript Accepted: August 11, 1999
Published: December 1, 1999

Citation
Stephen A. Coulombe and John R. McNeil, "Modal characteristics of short-pitch photoresist gratings exhibiting zero-order diffraction anomalies," J. Opt. Soc. Am. A 16, 2904-2913 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-12-2904


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, Philos. Mag. 4, 396–398 (1902). [CrossRef]
  2. J. W. S. Rayleigh, “Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14, 60–65 (1907). [CrossRef]
  3. N. Garcia, A. A. Maradudin, “Exact calculations of the diffraction of S-polarized electromagnetic radiation from large-amplitude dielectric gratings,” Opt. Commun. 45, 301–306 (1983). [CrossRef]
  4. A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  5. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfield’s waves),” J. Opt. Soc. Am. 31, 213–222 (1941). [CrossRef]
  6. L. L. Hope, “Theory of optical grating couplers,” Opt. Commun. 5, 179–182 (1972). [CrossRef]
  7. D. Maystre, R. Petit, “Brewster incidence for metallic gratings,” Opt. Commun. 17, 196–200 (1976). [CrossRef]
  8. M. C. Hutley, D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–435 (1976). [CrossRef]
  9. S. H. Zaidi, M. Yousaf, S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First order coupling,” J. Opt. Soc. Am. B 8, 770–779 (1991). [CrossRef]
  10. L. Mashev, E. Popov, “Diffraction efficiency anomalies of multi-coated dielectric gratings,” Opt. Commun. 51, 131–136 (1984). [CrossRef]
  11. M. Nevière, R. Petit, M. Cadilhac, “About the theory of optical grating coupler-waveguide systems,” Opt. Commun. 8, 113–117 (1973). [CrossRef]
  12. V. Shah, T. Tamir, “Brewster phenomena in lossy structures,” Opt. Commun. 23, 113–117 (1977). [CrossRef]
  13. S. L. Chuang, J. A. Kong, “Wave scattering and guidance by dielectric waveguides with periodic surfaces: addendum,” J. Opt. Soc. Am. 73, 1823–1824 (1983). [CrossRef]
  14. M. C. Hutley, V. M. Bird, “A detailed experimental study of the anomalies of a sinusoidal diffraction grating,” Opt. Acta 20, 771–782 (1973). [CrossRef]
  15. L. F. DeSandre, J. M. Elson, “Extinction-theorem analysis of diffraction anomalies in overcoated gratings,” J. Opt. Soc. Am. A 8, 763–777 (1991). [CrossRef]
  16. S. M. Norton, G. M. Morris, T. Erdogan, “Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models,” J. Opt. Soc. Am. A 15, 464–472 (1998). [CrossRef]
  17. M. R. Murnane, C. J. Raymond, Z. R. Hatab, S. S. H. Naqvi, J. R. McNeil, “Developed photoresist metrology using scatterometry,” in Integrated Circuit Metrology, Inspection, and Process Control VIII, M. H. Bennett, ed., Proc. SPIE2196, 47–59 (1994). [CrossRef]
  18. X. Chen, Z. Zhang, S. R. J. Brueck, R. Carpio, J. S. Petersen, “Process development for 180-nm structures using interferometric lithography and I-line photoresist,” in Emerging Lithographic Technologies, D. E. Seeger, ed., Proc. SPIE3048, 309–318 (1997). [CrossRef]
  19. A. B. Buckman, Guided-Wave Photonics (Harcourt Brace Jovanovich, Orlando, Fla., 1992).
  20. D. L. Lee, Electromagnetic Principles of Integrated Optics (Wiley, New York, 1986).
  21. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989).
  22. D. Botez, L. J. Mawst, G. L. Peterson, “Resonant leaky-wave coupling in linear arrays of antiguides,” Electron. Lett. 24, 1328–1330 (1988). [CrossRef]
  23. R. F. Nabiev, A. I. Onishchenko, “Laterally coupled periodic semiconductor laser structures: Bloch function analysis,” IEEE J. Quantum Electron. 28, 2024–2032 (1992). [CrossRef]
  24. C. A. Zmudzinski, D. Botez, L. J. Mawst, “Simple description of laterally resonant, distributed feedback-like modes of arrays of antiguides,” Appl. Phys. Lett. 60, 1049–1051 (1992). [CrossRef]
  25. A.-S. Chu, “Silicon quantum walls: fabrication and optical analysis,” Ph.D. dissertation (University of New Mexico, Albuquerque, N.M., 1996).
  26. P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982). [CrossRef]
  27. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  28. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1383–1392 (1982). [CrossRef]
  29. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction—E mode polarization and losses,” J. Opt. Soc. Am. 73, 451–455 (1983). [CrossRef]
  30. M. G. Moharam, E. B. Grann, D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  31. K. P. Bishop, S. M. Gaspar, L. M. Milner, S. S. H. Naqvi, J. R. McNeil, “Grating line shape characterization using scatterometry,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 64–73 (1991). [CrossRef]
  32. K. P. Bishop, “Use of rigorous diffraction analysis for the characterization of latent-image gratings in photoresist,” M.S. thesis (University of New Mexico, Albuquerque, N.M., 1992).
  33. S. S. H. Naqvi, J. R. McNeil, R. H. Krukar, K. P. Bishop, “Scatterometry and the simulation of diffraction-based metrology,” Microlithogr. World 2, 5–16 (1993).
  34. S. S. H. Naqvi, J. R. McNeil, R. H. Krukar, Z. R. Hatab, “Grating parameter estimation using scatterometry,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 170–180 (1993). [CrossRef]
  35. M. R. Murnane, C. J. Raymond, S. L. Prins, S. S. H. Naqvi, J. R. McNeil, “Scatterometry for 0.24 μm–0.70 μm developed photoresist metrology,” in Integrated Circuit Metrology, Inspection, and Process Control IX, M. H. Bennett, ed., Proc. SPIE2439, 427–436 (1995). [CrossRef]
  36. M. R. Murnane, C. J. Raymond, S. S. H. Naqvi, J. R. McNeil, “Subwavelength photoresist grating metrology using scatterometry,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 251–261 (1995). [CrossRef]
  37. M. R. Murnane, “The characterization of sub-half-micron periodic structures using scatterometry,” M.S. thesis (University of New Mexico, Albuquerque, N.M., 1995).
  38. C. J. Raymond, M. R. Murnane, S. S. H. Naqvi, J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B 13, 1484–1495 (1995). [CrossRef]
  39. C. J. Raymond, J. R. McNeil, S. S. H. Naqvi, “Scatterometry for CD measurements of etched structures,” in Metrology, Inspection, and Process Control for Microlithography X, S. K. Jones, ed., Proc. SPIE2725, 720–728 (1996). [CrossRef]
  40. C. J. Raymond, M. R. Murnane, S. L. Prins, S. S. H. Naqvi, J. R. McNeil, J. W. Hosch, “Multi-parameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15, 361–368 (1997). [CrossRef]
  41. C. J. Raymond, S. S. H. Naqvi, J. R. McNeil, “Resist and etched line profile characterization using scatterometry,” in Metrology, Inspection, and Process Control for Microlithography XI, S. K. Jones, ed., Proc. SPIE3050, 476–486 (1997). [CrossRef]
  42. S. A. Coulombe, B. K. Minhas, C. J. Raymond, S. S. H. Naqvi, J. R. McNeil, “Scatterometry measurement of sub-0.1 μm linewidth gratings,” J. Vac. Sci. Technol. B 16, 80–87 (1998). [CrossRef]
  43. H. H. Figueroa, “Course notes, computational wave electromagnetics: MESH, SUSI, FEM” (State University of Campinas, Brazil, 1998).
  44. E. N. Glytsis, T. K. Gaylord, “Antireflection surface structure: dielectric layer(s) over a high spatial-frequency surface-relief grating on a lossy substrate,” J. Appl. Phys. 27, 4288–4304 (1988).
  45. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986). [CrossRef] [PubMed]
  46. C. W. Haggans, L. Li, R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993). [CrossRef]
  47. S. A. Coulombe, “Analysis of dielectric grating anomalies for improving scatterometer linewidth measurement sensitivity,” Ph.D. dissertation (University of New Mexico, Albuquerque, N.M., 1999).
  48. J. C. Stover, “Optical scatter: careful measurement of optical scatter provides a keen diagnostic tool for laser applications,” Lasers Optron., 61–69 (August1988).
  49. A. Arsenieva, S. Feng, “Correspondence between correlation functions and enhanced backscattering peak for scattering from smooth random surfaces,” Phys. Rev. B 47, 13047–13050 (1993). [CrossRef]
  50. K. A. O’Donnell, R. Torre, C. S. West, “Observations of backscattering effects in second-harmonic generation from a weakly rough metal surface,” Opt. Lett. 21, 1738–1740 (1996). [CrossRef] [PubMed]
  51. M. Leyva-Lucero, E. R. Mendez, T. A. Leskova, A. A. Maradudin, J. Q. Lu, “Multiple-scattering effects in the second-harmonic generation of light in reflection from a randomly rough metal surface,” Opt. Lett. 21, 1809–1811 (1996). [CrossRef] [PubMed]
  52. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited