OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 2 — Feb. 1, 1999
  • pp: 246–257

Convex projections algorithm for restoration of limited-angle chromotomographic images

Andrzej K. Brodzik and Jonathan M. Mooney  »View Author Affiliations

JOSA A, Vol. 16, Issue 2, pp. 246-257 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new algorithm for image restoration in limited-angle chromotomography. The algorithm is a generalization of the technique considered previously by the authors, based on a hybrid of a direct method of inversion and the iterative method of projections onto convex sets. The generalization is achieved by introducing a new object domain constraint. This constraint takes advantage of hyperspectral data redundancy and is realized by truncating the singular-value decomposition of the spatial–chromatic image matrix. As previously, the transform domain constraint is defined in terms of nonzero singular values of the system transfer function matrix. The new algorithm delivers high image fidelity, converges rapidly, and is easy to implement. Results of experiments on real data are included.

© 1999 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(040.3060) Detectors : Infrared
(100.3020) Image processing : Image reconstruction-restoration
(100.6950) Image processing : Tomographic image processing
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

Original Manuscript: May 27, 1998
Revised Manuscript: September 21, 1998
Manuscript Accepted: August 5, 1998
Published: February 1, 1999

Andrzej K. Brodzik and Jonathan M. Mooney, "Convex projections algorithm for restoration of limited-angle chromotomographic images," J. Opt. Soc. Am. A 16, 246-257 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Solmon, “The x-ray transform,” J. Math. Anal. Appl. 56, 61–83 (1976). [CrossRef]
  2. H. H. Barrett, “Limited-angle tomography for the nineties,” J. Nucl. Med. 31, 1689–1692 (1990).
  3. D. A. Hayner, W. K. Jenkins, “The missing cone problem in computer tomography,” in Advances in Computer Vision and Image Processing, T. S. Huang, ed. (JAI Press, London, 1984), Vol. 1, pp. 83–144.
  4. J. M. Mooney, V. E. Vickers, M. An, A. K. Brodzik, “A high-throughput hyperspectral infrared camera,” J. Opt. Soc. Am. A 14, 2951–2961 (1997). [CrossRef]
  5. K. C. Tam, V. Perez-Mendez, “Tomographic imaging with limited-angle input,” J. Opt. Soc. Am. 71, 582–592 (1981). [CrossRef]
  6. F. Natterer, The Mathematics of Computerized Tomography (Wiley, Stuttgart, 1986).
  7. H. Hiriyannaiai, “X-ray computed tomography for medical imaging,” IEEE Signal Process. Mag. 14 (No. 2), 42–59 (1997). [CrossRef]
  8. A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst. CAS-22, 735–742 (1975). [CrossRef]
  9. R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974). [CrossRef]
  10. A. K. Brodzik, J. M. Mooney, M. An, “Image restoration by convex projections: application to image spectrometry,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 231–242 (1996). [CrossRef]
  11. H. Knutsson, P. Edholm, G. Grandlund, C. Petersson, “Ectomography—a new radiographic reconstruction method—I. Theory and error estimates,” IEEE Trans. Biomed. Eng. BME-27, 640–648 (1980). [CrossRef]
  12. F. Deprettere, ed., SVD and Signal Processing: Algorithms, Applications and Architectures (Elsevier, Amsterdam, 1988).
  13. R. Vaccaro, ed., SVD and Signal Processing II: Algorithms, Analysis and Applications (Elsevier, Amsterdam, 1991).
  14. H. C. Andrews, C. L. Patterson, “Singular value decomposition and digital image processing,” IEEE Trans. Acoust., Speech, Signal Process. ASSP-24, 26–53 (1976). [CrossRef]
  15. K. Konstantinides, B. Natarajan, G. S. Yovanof, “Noise estimation and filtering using block-based singular value decomposition,” IEEE Trans. Image Process. 6 (No. 3), 479–483 (1997). [CrossRef] [PubMed]
  16. P. K. Sadasivan, D. N. Dutt, “SVD based technique for noise reduction in electroencephalographic signals,” Signal Process. 55, 179–189 (1996). [CrossRef]
  17. J. S. Goldstein, I. S. Reed, “Reduced-rank adaptive filtering,” IEEE Trans. Signal Process. 45, 492–496 (1997). [CrossRef]
  18. S. Heidari, C. L. Nikias, “Co-channel interference mitigation in the time-scale domain: the CIMTS algorithm,” IEEE Trans. Signal Process. 44, 2151–2162 (1996). [CrossRef]
  19. N. H. Endsley, “Spectral unmixing algorithms based on statistical models,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE2480, 23–36 (1995). [CrossRef]
  20. A. A. Green, M. Berman, P. Switzer, M. D. Craig, “A transformation for ordering multispectral data in terms of image quality with implications for noise removal,” IEEE Trans. Geosci. Remote Sens. 26 (No. 1), 65–74 (1988). [CrossRef]
  21. J. B. Lee, A. S. Woodyatt, M. Berman, “Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal component transform,” IEEE Trans. Geosci. Remote Sens. 28 (No. 3), 295–304 (1990). [CrossRef]
  22. J. M. Mooney, “Spectral imaging via computed tomography,” in Proceedings of the 1994 Meeting of the Infrared Information Symposia Specialty Group on Passive Sensors (Defense Technical Information Center, Alexandria, Va., 1994), pp. 203–215.
  23. J. M. Mooney, A. K. Brodzik, M. An, “Principal component analysis in limited angle chromotomography,” in Imaging Spectrometry, M. R. Descour, S. S. Shen, eds., Proc. SPIE3118, 170–178 (1997). [CrossRef]
  24. G. Golub, C. Van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1993).
  25. A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications (Wiley, New York, 1980).
  26. A. Sano, “Optimally regularized inverse of singular value decomposition and application to signal extrapolation,” Signal Process. 30, 163–176 (1993). [CrossRef]
  27. L. M. Bregman, “The method of successive projections for finding a common point of convex sets,” Dokl. Akad. Nauk SSSR 162 (No. 3), 487–490 (1965).
  28. L. G. Gubin, B. T. Polyak, E. V. Raik, “The method of projections for finding a common point of convex sets,” USSR Comput. Math. Math. Phys. 7 (No. 6), 1–24 (1967). [CrossRef]
  29. D. C. Youla, H. Webb, “Image restoration by the method of convex projections: Part 1—theory,” IEEE Trans. Med. Imaging MI-1 (No. 2), 81–94 (1982). [CrossRef]
  30. A. Levi, H. Stark, “Signal restoration from phase by projections onto convex sets,” J. Opt. Soc. Am. 73, 810–822 (1983). [CrossRef]
  31. A. Levi, H. Stark, “Image restoration by the method of generalized projections with application to restoration from magnitude,” J. Opt. Soc. Am. A 1, 932–943 (1984). [CrossRef]
  32. M. I. Sezan, H. Stark, “Image restoration by the method of convex projections: Part 2—applications and numerical results,” IEEE Trans. Med. Imaging MI-1 (No. 2), 95–101 (1982). [CrossRef]
  33. P. L. Combettes, “The foundations of set theoretic estimation,” Proc. IEEE 81 (No. 2), 182–208 (1993). [CrossRef]
  34. P. J. Ready, P. A. Wintz, “Information extraction, SNR improvement, and data compression in multispectral imagery,” IEEE Trans. Commun. COM-21, 1123–1130 (1973). [CrossRef]
  35. C. E. Shannon, “Coding theorems for discrete source with a fidelity criterion,” in Institute of Radio Engineers National Convention Record (Institute of Radio Engineers, New York, 1959), Part 4, pp. 142–163.
  36. L. L. Scharf, “The SVD and reduced-rank signal processing,” in SVD and Signal Processing II: Algorithms, Analysis and Applications, R. Vaccaro, ed. (Elsevier, Amsterdam, 1991), pp. 3–31.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited