OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 2 — Feb. 1, 1999
  • pp: 323–330

Technique for diagnosing x-ray laser beam quality by use of the moiré signal

Jun Yang, Dianyuan Fan, Shiji Wang, and Yuan Gu  »View Author Affiliations

JOSA A, Vol. 16, Issue 2, pp. 323-330 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present what we believe is a novel technique based on the moiré effect for fully diagnosing the beam quality of an x-ray laser. Using Fresnel diffraction theory, we investigated the intensity profile of the moiré pattern when a general paraxial beam illuminates a pair of Ronchi gratings in the quasi-far field. Two formulas were derived to determine the beam quality factor M2 and the effective radius of curvature Re from the moiré pattern. On the basis of the results, the far-field divergence, the waist location, and the radius can be calculated further. Finally, we verified the approach by use of numerical simulation.

© 1999 Optical Society of America

OCIS Codes
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(340.0340) X-ray optics : X-ray optics

Original Manuscript: June 1, 1998
Revised Manuscript: October 8, 1998
Manuscript Accepted: September 2, 1998
Published: February 1, 1999

Jun Yang, Dianyuan Fan, Shiji Wang, and Yuan Gu, "Technique for diagnosing x-ray laser beam quality by use of the moiré signal," J. Opt. Soc. Am. A 16, 323-330 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kaufman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985). [CrossRef] [PubMed]
  2. M. D. Roson, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–110 (1985). [CrossRef]
  3. D. Matthews, M. Rosen, S. Brown, N. Ceglio, D. Eder, A. Hawryluk, C. Keane, R. London, B. MacGowan, S. Maxon, D. Nilson, J. Scofield, J. Trebes, “X-ray laser research at the Lawrence Livermore National Laboratory Nova laser facility,” J. Opt. Soc. Am. B 4, 575–587 (1987). [CrossRef]
  4. S. Wang, Y. Guan, G.-L. Zhou, Y. Ni, S. Yu, S. Fu, Z. Tao, W. Chen, Z. Lin, D. Fan, G. Zhang, J. Sheng, M. Yang, T. Zhang, Y. Shao, H. Peng, X. He, M. Yu, “Experimental research on saturated-gain for a soft x-ray laser from neon-like germanium plasma,” Chin. Phys. Lett. 8, 618–621 (1991). [CrossRef]
  5. S. Wang, Y. Gu, G.-L. Zhou, S. Yu, S. Fu, Y. Ni, J. Wu, Z. Zhou, G. Han, Z. Tao, Z. Lin, S. Wang, W. Chen, D. Fan, G. Zhang, J. Sheng, H. Peng, T. Zhang, Y. Shao, “Experimental investigation of high-gain Ne-like Ge soft x-ray laser by double-massive-target coupling,” J. Opt. Soc. Am. B 9, 360–368 (1992). [CrossRef]
  6. N. M. Ceglio, D. G. Stearns, D. P. Gaines, A. M. Hawryluk, J. E. Trebes, “Multipass amplification of soft-x-rays in a laser cavity,” Opt. Lett. 13, 108–110 (1988). [CrossRef]
  7. A. Carillon, H. Z. Chen, P. Dhez, L. Dwivedi, J. Jacoby, P. Jaegle, G. Jamelot, Jie Zhang, M. H. Key, A. Kidd, A. Klisnick, R. Kodama, J. Krishnan, C. L. S. Lewis, D. Neely, P. Norreys, D. O’Neill, G. J. Pert, S. A. Ramsden, J. P. Raucourt, G. J. Tallents, J. Uhomoibhi, “Saturated and near-diffraction-limited operation of an XUV laser at 23.6 nm,” Phys. Rev. Lett. 68, 2917–2920 (1992). [CrossRef] [PubMed]
  8. R. Kodama, D. Neely, Y. Kato, H. Daido, K. Murai, G. Yuan, A. MacPhee, C. L. S. Lewis, “Generation of small-divergence soft x-ray laser by plasma waveguiding with a curved target,” Phys. Rev. Lett. 73, 3215–3218 (1994). [CrossRef] [PubMed]
  9. G. M. Shimkaveg, M. R. Carter, R. S. Walling, J. M. Ticehurst, R. A. London, R. E. Stewart, “Oscillator-amplifier experiments in neon-like yttrium,” in Proceedings of the International Colloquium on X-Ray Lasers, Institute of Physics Conference Series 125 (University of Reading, Reading, UK, 1992), pp. 61–66.
  10. M. D. Rosen, “Future directions of laboratory XRL research,” in Short Wavelength Coherent Radiation: Generations and Applications, P. H. Bucksbaun, N. M. Ceglio, eds., Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 73–76.
  11. J. Nilsen, J. C. Moreno, “Nearly monochromatic lasing at 182 Å in neonlike selenium,” Phys. Rev. Lett. 74, 3376–3379 (1995). [CrossRef] [PubMed]
  12. J. Zhang, A. G. MacPhee, J. Lin, E. Wolfrum, R. Smith, C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, J. Nilsen, G. J. Pert, G. J. Tallents, J. S. Wark, “A saturated x-ray laser beam at 7 nanometers,” Science 276, 1097–1100 (1997), and references therein. [CrossRef]
  13. J. E. Trebes, K. A. Nugent, S. Mrowka, R. A. London, T. W. Barbee, M. R. Cart, J. A. Koch, B. J. MacGowan, D. L. Matthews, L. B. Da Silva, G. F. Stone, M. D. Feit, “Measurement of the spatial coherence of a soft-x-ray laser,” Phys. Rev. Lett. 68, 588–591 (1992). [CrossRef] [PubMed]
  14. J. A. Koch, B. J. MacGowan, L. B. Da Silva, D. L. Matthews, J. H. Underwood, P. J. Batson, S. Mrowka, “Observation of gain-narrowing and saturation behavior in Se x-ray laser line profiles,” Phys. Rev. Lett. 68, 3291–3294 (1992). [CrossRef] [PubMed]
  15. S. Suckewer, C. H. Skinner, D. Kim, E. Valeo, D. Voorhees, A. Wouters, “Divergence measurements of soft x-ray laser beam,” Phys. Rev. Lett. 57, 1004–1007 (1985). [CrossRef]
  16. J. C. Moreno, J. Nilsen, Y. Li, P. Lu, E. E. Fill, “Two-dimensional near-field images of the neonlike germanium soft x-ray laser,” Opt. Lett. 21, 866–868 (1996). [CrossRef] [PubMed]
  17. A. E. Siegman, “New development in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990). [CrossRef]
  18. P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196–198 (1991). [CrossRef] [PubMed]
  19. A. E. Siegman, “Defining the effective radius of curvature for a nonideal optical beam,” IEEE J. Quantum Electron. QE-27, 1146–1148 (1991). [CrossRef]
  20. Z. Karny, S. Lavi, O. Kafri, “Direct determination of the number of transverse modes of a light beam,” Opt. Lett. 8, 409–411 (1983). [CrossRef] [PubMed]
  21. T. Afshar-rad, O. Willi, “A novel technique for x-ray laser beam characterization,” Appl. Phys. B: Photophys. Laser Chem. 50, 287–290 (1990). [CrossRef]
  22. O. Kafri, “Noncoherent method for mapping phase objects,” Opt. Lett. 5, 555–557 (1980). [CrossRef] [PubMed]
  23. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), Chap. 10.
  24. L. Liu, “Talbot and Lau effects on incident beams of arbitrary wavefront, and their use,” Appl. Opt. 28, 4668–4678 (1989). [CrossRef] [PubMed]
  25. E. Keren, O. Kafri, “Diffraction effects in moiré deflectometry,” J. Opt. Soc. Am. A 2, 111–120 (1985). [CrossRef]
  26. W. H. Carter, E. Wolf, “Coherence and radiometry with quasihomogeneous planar sources,” J. Opt. Soc. Am. 67, 785–796 (1977). [CrossRef]
  27. M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical system,” Optik (Stuttgart) 82, 173–181 (1989).
  28. F. Gori, “Collett–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980). [CrossRef]
  29. A. Starikov, E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982). [CrossRef]
  30. X. Deng, H. Guo, Q. Cao, “The invariable integral and statistical equations for a paraxial beam in free space,” Sci. China (Series A) 27, 64–71 (1997) (in Chinese).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited