OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 2 — Feb. 1, 1999
  • pp: 359–363

Coherence waves

Adolf W. Lohmann, David Mendlovic, and Gal Shabtay  »View Author Affiliations


JOSA A, Vol. 16, Issue 2, pp. 359-363 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000359


View Full Text Article

Enhanced HTML    Acrobat PDF (297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In 1955 Wolf noticed that the mutual coherence function Γ obeys two wave equations [Proc. R. Soc. London 230, 246 (1955)]. The physical optics of this finding is thoroughly presented in Mandel and Wolf’s recent monograph [Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK 1995)]. We discuss those coherence waves in the spirit of optical signal processing. The term coherence waves is justified if one accepts the following paradigm: A wave is whatever obeys the wave equation.

© 1999 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(350.7420) Other areas of optics : Waves

History
Original Manuscript: March 19, 1998
Revised Manuscript: September 21, 1998
Manuscript Accepted: September 25, 1998
Published: February 1, 1999

Citation
Adolf W. Lohmann, David Mendlovic, and Gal Shabtay, "Coherence waves," J. Opt. Soc. Am. A 16, 359-363 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-2-359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 4, pp. 147–228.
  2. E. Wolf, “A macroscopic theory of interference and diffraction of light from finite sources. II. Fields with a spectral range of arbitrary width,” Proc. R. Soc. London 230, 246–265 (1955). [CrossRef]
  3. L. Mandel, E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965). [CrossRef]
  4. L. Mandel, E. Wolf, “Spectral coherence and the concept of cross-spectral purity,” J. Opt. Soc. Am. 66, 529–535 (1976). [CrossRef]
  5. E. Wolf, “Coherence and radiometry,” J. Opt. Soc. Am. 68, 6–17 (1978). [CrossRef]
  6. M. Born, E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction (Pergamon, New York, 1980), Chap. 10, pp. 491–555.
  7. M. F. Erden, H. M. Ozaktas, D. Mendlovic, “Synthesis of mutual intensity distribution using the fractional Fourier transform,” Opt. Commun. 125, 288–301 (1996). [CrossRef]
  8. M. F. Erden, H. M. Ozaktas, D. Mendlovic, “Propagation of mutual intensity expressed in terms of the fractional Fourier transform,” J. Opt. Soc. Am. A 13, 1068–1071 (1996). [CrossRef]
  9. M. J. Beran, G. R. Parrent, Theory of Partial Coherence (Prentice-Hall, Englewood Cliffs, N.J., 1964), Chaps. 3 and 4, pp. 36–64.
  10. J. J. McCoy, M. J. Beran, “Propagation of beamed signals through inhomogeneous media: a diffraction theory,” J. Acoust. Soc. Am. 59, 1142–1149 (1976). [CrossRef]
  11. M. J. Beran, “Propagation of a finite beam in a random medium,” J. Opt. Soc. Am. 60, 518–521 (1970). [CrossRef]
  12. A. W. Lohmann, D. Mendlovic, Z. Zalevsky, G. Shabtay, “The use of Ewald’s surfaces in triple correlation optics,” Opt. Commun. 144, 170–172 (1997). [CrossRef]
  13. A. S. Marathay, Elements of Optical Coherence Theory (Wiley, New York, 1982), Chaps. 4 and 5, pp. 60–181.
  14. A. S. Marathay, “Noncoherent-object hologram: its reconstruction and optical processing,” J. Opt. Soc. Am. A 4, 1861–1868 (1987). [CrossRef]
  15. C. Iaconis, I. A. Walmsley, “Direct measurement of the two-point field correlation function,” Opt. Lett. 21, 1783–1785 (1996). [CrossRef] [PubMed]
  16. J. Tu, S. Tamura, “Analytic relation for recovering the mutual intensity by means of intensity information,” J. Opt. Soc. Am. A 15, 202–206 (1998). [CrossRef]
  17. D. Mendlovic, G. Shabtay, A. W. Lohmann, N. Konforti, “Display of spatial coherence,” Opt. Lett. 23, 1084–1086 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited