Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Combined grazing-angle and normal-incidence reflectometry of absorbing media

Not Accessible

Your library or personal account may give you access

Abstract

We have studied the grazing-incidence differential-reflectance method for obtaining the dielectric function of absorbing media in terms of the derivatives Rp and Rs of the polarized light reflectances and found that it does not guarantee adequate accuracy for almost any values of the optical parameters. Therefore we modify that approach and describe what we believe is a novel method for the unambiguous determination of the optical constants n and k of a metal and other absorbing materials in terms of the ratio of the derivatives α=Rp/Rs at the grazing incidence and the normal incidence reflection coefficient R. Moreover, it is possible to express α through the logarithmic derivatives (1/R)R in the vicinity of the grazing angle. The possibility of performing measurements at the unspecified angle without knowledge of the explicit value of this angle is an evident advantage of this technique. For the great majority of metals and semiconductors the relative errors in the optical constants are comparable to or less than the relative errors in the experimentally measured parameters.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Design of optimum high-reflectivity coatings for grazing angles of incidence

Jeffrey B. Shellan
J. Opt. Soc. Am. A 2(7) 1057-1065 (1985)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved