OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 467–474

Image fusion with additive multiresolution wavelet decomposition. Applications to SPOT+Landsat images

Jorge Núñez, Xavier Otazu, Octavi Fors, Albert Prades, Vicenç Palà, and Román Arbiol  »View Author Affiliations


JOSA A, Vol. 16, Issue 3, pp. 467-474 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000467


View Full Text Article

Enhanced HTML    Acrobat PDF (653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A technique based on multiresolution wavelet decomposition was developed for the merging and data fusion of a high-resolution panchromatic image and a low-resolution multispectral image. The standard data fusion methods may not be satisfactory, because they can distort the spectral characteristics of the multispectral data. The method presented here consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. More specifically, we add the high-order coefficients of the wavelet transform of the panchromatic image to the intensity component (L) of the multispectral image. The method is thus an improvement on standard intensity–hue–saturation (IHS or LHS) mergers. An alternative approach for correcting the red–green–blue coefficients is also discussed. We used the method to merge SPOT and Landsat Thematic Mapper images (SPOT means Système pour l’Observation de la Terre). The technique presented is clearly better than the IHS and LHS mergers for preserving both spectral and spatial information.

© 1999 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.2980) Image processing : Image enhancement
(100.7410) Image processing : Wavelets
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: February 27, 1998
Revised Manuscript: October 16, 1998
Manuscript Accepted: September 29, 1998
Published: March 1, 1999

Citation
Jorge Núñez, Xavier Otazu, Octavi Fors, Albert Prades, Vicenç Palà, and Román Arbiol, "Image fusion with additive multiresolution wavelet decomposition. Applications to SPOT+Landsat images," J. Opt. Soc. Am. A 16, 467-474 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-3-467


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Taxt, A. H. Schistad-Solberg, “Data fusion in remote sensing,” in Proceedings of the Fifth International Workshop on Data Analysis in Astronomy, V. Di Gesu, L. Scarsi, eds. (World Scientific, Singapore, 1996), pp. 269–280.
  2. P. S. Chavez, S. C. Sides, J. A. Anderson, “Comparison of three different methods to merge multi-resolution and multispectral data: Landsat TM and SPOT panchromatic,” Photogramm. Eng. Remote Sens. 57, 295–303 (1991).
  3. J. C. Tilton, ed., Proceedings of Conference on Multisource Data Integration in Remote Sensing, NASA Conf. Publ. 3099 (NASA, Washington, D.C., 1991).
  4. J. W. Carper, T. M. Lillesand, R. W. Kiefer, “The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data,” Photogramm. Eng. Remote Sens. 56, 459–467 (1990).
  5. V. K. Shettigara, “A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set,” Photogramm. Eng. Remote Sens. 58, 561–567 (1992).
  6. M. Datcu, D. Luca, K. Seidel, “Multiresolution analysis of SAR images,” in Proceedings of the European Conference on Synthetic Aperture Radar (VDE-Verlag Gmbh, Berlin, 1996), pp. 375–378.
  7. D. A. Yocky, “Image merging and data fusion by means of the discrete two-dimensional wavelet transform,” J. Opt. Soc. Am. A 12, 1834–1841 (1995). [CrossRef]
  8. D. A. Yocky, “Multiresolution wavelet decomposition image merger of LANDSAT thematic mapper and SPOT panchromatic data,” Photogramm. Eng. Remote Sens. 62, 1067–1074 (1996).
  9. B. Garguet-Duport, J. Girel, J. M. Chassery, G. Pautou, “The use of multiresolution analysis and wavelets transform for merging SPOT panchromatic and multispectral image data,” Photogramm. Eng. Remote Sens. 62, 1057–1066 (1996).
  10. T. Ranchin, L. Wald, M. Mangolini, “The ARSIS method: a general solution for improving spatial resolution of images by the means of sensor fusion,” in Proceedings of the Conference on Fusion of Earth Data, T. Ranchin, L. Wald, eds. (SEE/URISCA, Nice, France, 1996), pp. 53–58.
  11. J. Núñez, X. Otazu, O. Fors, A. Prades, “Simultaneous image fusion and reconstruction using wavelets. Applications to SPOT+LANDSAT images,” Vistas Astron. 41, 351–357 (1997). [CrossRef]
  12. A. R. Smith, “Color gamut transform pairs,” Comput. Graph. 12, 12–19 (1978). [CrossRef]
  13. Association for Computing Machinery, “Status report of the graphics Standard Planning Committee,” Comput. Graph. 13, (1979).
  14. Y. Meyer, Wavelets. Algorithms and Applications (SIAM Press, Philadelphia, Pa., 1993).
  15. R. K. Young, Wavelet Theory and its Applications (Kluwer Academic, Boston, 1993).
  16. I. Daubechies, Ten Lectures on Wavelets (SIAM Press, Philadelphia, Pa., 1992).
  17. C. K. Chui, An Introduction to Wavelets (Boston Academic, Boston, 1992).
  18. G. Kaiser, A Friendly Guide to Wavelets (Birkhauser, Boston, 1994).
  19. M. Vetterli, J. Kovacevic, Wavelets and Subband Coding (Prentice Hall, Englewood Cliffs, N.J., 1995).
  20. J. L. Starck, E. Pantin, “Multiscale maximum entropy image restoration,” Vistas Astron. 40, 563–569 (1996). [CrossRef]
  21. F. Rué, A. Bijaoui, “A multiscale vision model applied to astronomical images,” Vistas Astron. 40, 495–502 (1996). [CrossRef]
  22. S. Mallat, “A theory for multiresolution signal: the wavelet representation,” IEEE Trans. Pattern. Anal. Mach. Intell. 11, 674–693 (1989). [CrossRef]
  23. J. L. Starck, F. Murtagh, “Image restoration with noise suppression using the wavelet transform,” Astron. Astrophys. 288, 342–350 (1994).
  24. M. Holschneider, P. Tchamitchian, “Regularité local de la fonction ‘non-differentiable’ de Riemann,” in Les ondelettes in 1989, P. G. Lemarié, ed., Lecture Notes in Mathematics No. 1438 (Springer-Verlag, Berlin, 1990), pp. 102–124.
  25. P. J. Burt, E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. COM-31, 532–540 (1983). [CrossRef]
  26. J. Núñez, X. Otazu, O. Fors, A. Prades, “Fusion and reconstruction of LANDSAT and SPOT images using wavelets,” in Proceedings of the Second Conference on Fusion of Earth Data, T. Ranchin, L. Wald, eds. (SEE/URISCA, Nice, France, 1998), pp. 103–108.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited