OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 549–562

Two-dimensional equalization in coherent and incoherent page-oriented optical memory

Keith M. Chugg, Xiaopeng Chen, and Mark A. Neifeld  »View Author Affiliations


JOSA A, Vol. 16, Issue 3, pp. 549-562 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000549


View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The low-pass nature of the optical systems (both coherent and incoherent) used for volume optical storage results in the presence of intersymbol interference (ISI) at the output of these systems. Since ISI can seriously degrade retrieved data fidelity, we consider the design of linear, minimum-mean-square-error equalizers for two-dimensional finite-contrast optical ISI channels. Signal models are developed and filter design is conducted for various operating environments associated with particular implementations of page-oriented optical memories (POM’s). Specifically, we consider optically incoherent systems dominated by either postdetection thermal or photon-shot noise, and coherent systems are treated subject to either postdetection thermal or coherent speckle noise. Simple locally connected postdetection filters (equalizers) are designed to reduce the impact of ISI and finite contrast on retrieved data. It is demonstrated how these simple ISI mitigation algorithms may be used to improve the fidelity (i.e., bit error rate) of retrieved data and also to enhance the space–bandwidth-product (SBP), the storage density, and the memory capacity of POM systems. The notion of a fidelity-based SBP is quantified and shown to depend strongly on the receiver processing. The fidelity-based SBP of thermal-noise-dominated incoherent imaging systems operating at the Rayleigh resolution is shown to improve by 28% through the use of equalization, and a 48% SBP increase is found in the shot-noise-dominated case. More dramatic gains are found for thermal-noise-dominated coherent systems operating at the Rayleigh resolution, with 116% SBP gains typical in the infinite-contrast case and 30% gains possible for low-contrast (C=4) cases. Equalization is also shown to facilitate a capacity increase for holographic POM systems, providing a 47% increase in the number of stored pages and the storage density for a system operating at the Rayleigh resolution. The maximum storage density in holographic POM is increased by 20% through the use of equalization.

© 1999 Optical Society of America

OCIS Codes
(100.2550) Image processing : Focal-plane-array image processors
(110.4280) Imaging systems : Noise in imaging systems
(200.0200) Optics in computing : Optics in computing
(210.0210) Optical data storage : Optical data storage
(210.2860) Optical data storage : Holographic and volume memories

History
Original Manuscript: March 17, 1998
Revised Manuscript: August 21, 1998
Manuscript Accepted: October 12, 1998
Published: March 1, 1999

Citation
Keith M. Chugg, Xiaopeng Chen, and Mark A. Neifeld, "Two-dimensional equalization in coherent and incoherent page-oriented optical memory," J. Opt. Soc. Am. A 16, 549-562 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-3-549

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited