OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 549–562

Two-dimensional equalization in coherent and incoherent page-oriented optical memory

Keith M. Chugg, Xiaopeng Chen, and Mark A. Neifeld  »View Author Affiliations


JOSA A, Vol. 16, Issue 3, pp. 549-562 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000549


View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The low-pass nature of the optical systems (both coherent and incoherent) used for volume optical storage results in the presence of intersymbol interference (ISI) at the output of these systems. Since ISI can seriously degrade retrieved data fidelity, we consider the design of linear, minimum-mean-square-error equalizers for two-dimensional finite-contrast optical ISI channels. Signal models are developed and filter design is conducted for various operating environments associated with particular implementations of page-oriented optical memories (POM’s). Specifically, we consider optically incoherent systems dominated by either postdetection thermal or photon-shot noise, and coherent systems are treated subject to either postdetection thermal or coherent speckle noise. Simple locally connected postdetection filters (equalizers) are designed to reduce the impact of ISI and finite contrast on retrieved data. It is demonstrated how these simple ISI mitigation algorithms may be used to improve the fidelity (i.e., bit error rate) of retrieved data and also to enhance the space–bandwidth-product (SBP), the storage density, and the memory capacity of POM systems. The notion of a fidelity-based SBP is quantified and shown to depend strongly on the receiver processing. The fidelity-based SBP of thermal-noise-dominated incoherent imaging systems operating at the Rayleigh resolution is shown to improve by 28% through the use of equalization, and a 48% SBP increase is found in the shot-noise-dominated case. More dramatic gains are found for thermal-noise-dominated coherent systems operating at the Rayleigh resolution, with 116% SBP gains typical in the infinite-contrast case and 30% gains possible for low-contrast (C=4) cases. Equalization is also shown to facilitate a capacity increase for holographic POM systems, providing a 47% increase in the number of stored pages and the storage density for a system operating at the Rayleigh resolution. The maximum storage density in holographic POM is increased by 20% through the use of equalization.

© 1999 Optical Society of America

OCIS Codes
(100.2550) Image processing : Focal-plane-array image processors
(110.4280) Imaging systems : Noise in imaging systems
(200.0200) Optics in computing : Optics in computing
(210.0210) Optical data storage : Optical data storage
(210.2860) Optical data storage : Holographic and volume memories

History
Original Manuscript: March 17, 1998
Revised Manuscript: August 21, 1998
Manuscript Accepted: October 12, 1998
Published: March 1, 1999

Citation
Keith M. Chugg, Xiaopeng Chen, and Mark A. Neifeld, "Two-dimensional equalization in coherent and incoherent page-oriented optical memory," J. Opt. Soc. Am. A 16, 549-562 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-3-549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963). [CrossRef]
  2. F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223 (1968). [CrossRef]
  3. B. Hill, “Holographic memories and their future,” in Advances in Holography, N. Farhat, ed. (Marcel Dekker, New York, 1976), Vol. 3, pp. 1–251.
  4. D. Psaltis, “Parallel optics memories,” BYTE 17, 179–182 (1992).
  5. G. Sincerbox, “Holographic storage: will the material and component technology meet the new challenges,” in International Conference on Holography and Optical Information Processing, G. Jin, G. Mu, G. T. Sincerbox, eds., Proc. SPIE2866, 130–135 (1996). [CrossRef]
  6. S. Campbell, X. Yi, P. Yeh, “Hybrid sparse-wavelength angularly multiplexed optical data storage system,” Opt. Lett. 19, 2161–2163 (1994). [CrossRef] [PubMed]
  7. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996). [CrossRef] [PubMed]
  8. H.-Y. S. Li, D. Psaltis, “Three dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994). [CrossRef] [PubMed]
  9. E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995). [CrossRef] [PubMed]
  10. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993). [CrossRef] [PubMed]
  11. G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90 degree geometry,” Opt. Commun. 117, 49–55 (1995). [CrossRef]
  12. G. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992). [CrossRef]
  13. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991). [CrossRef]
  14. A. S. Dvornikov, I. Cokgor, F. McCormick, R. Piyaket, S. Esner, P. M. Rentzepis, “Molecular transformations as a means for 3D optical memory devices,” Opt. Commun. 128, 205–210 (1996). [CrossRef]
  15. D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage systems,” Opt. Lett. 21, 1780–1782 (1996). [CrossRef] [PubMed]
  16. K. M. Chugg, X. P. Chen, M. A. Neifeld, “Two-dimensional linear MMSE equalization for page-oriented optical memories,” in Proceedings of the 31st Annual Asliomar Conference on Signals, Systems, and Computers (IEEE Computer Society Press, Los Alamitos, Calif., 1997), Paper MP6-7.
  17. J. Heanue, M. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995). [CrossRef]
  18. B. Olson, S. Esener, “Partial response precoding for parallel readout optical memories,” Opt. Lett. 19, 661–663 (1994). [CrossRef] [PubMed]
  19. B. Olson, S. Esener, “Multidimensional partial response for parallel readout optical memories,” in Photonics for Processers, Neural Networks, and Memories II, B. Javidi, J. L. Horner, eds., Proc. SPIE2297, 331–344 (1994). [CrossRef]
  20. J. F. Heanue, K. Gurkan, L. Hesselink, “Signal detection for page access optical memories with intersymbol interference,” Appl. Opt. 35, 2431–2438 (1996). [CrossRef] [PubMed]
  21. J. F. Hutton, G. A. Betzos, M. Schaffer, P. A. Mitkas, “Error correcting codes for page-oriented optical memories,” in Materials, Devices, and Processing for Optoelectronic Processing, B. Javidi, J. A. Neff, eds., Proc. SPIE2848, 146–156 (1996). [CrossRef]
  22. B. J. Goertzen, P. A. Mitkas, “Error-correcting code for volume holographic storage of a relational database,” Opt. Lett. 20, 1655–1657 (1995). [CrossRef] [PubMed]
  23. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997). [CrossRef] [PubMed]
  24. A. Vardy, M. Blaum, P. H. Siegel, G. Sincerbox, “Conservative arrays: multidimensional modulation codes for holographic recording,” IEEE Trans. Inf. Theory 42, 227–229 (1996). [CrossRef]
  25. M. A. Neifeld, J. D. Hayes, “Parallel error correction for optical memories,” J. Opt. Mem. Neural Networks 3, 87–98 (1994).
  26. M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994). [CrossRef] [PubMed]
  27. M. A. Neifeld, J. D. Hayes, “Error correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995). [CrossRef] [PubMed]
  28. M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel crosstalk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997). [CrossRef] [PubMed]
  29. M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. McFarlane, R. M. Shelby, G. T. Sincerbox, G. Wittman, “Holographic data storage materials,” MRS Bull. 21, 51–60 (1996).
  30. G. W. Burr, W. C. Chou, M. A. Neifeld, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, “Experimental evaluation of user capacity in holographic data-storage systems,” Appl. Opt. 37, 5431–5443 (1998). [CrossRef]
  31. W. C. Chou, M. A. Neifeld, “Interleaving and error correction in volume holographic memory systems,” Appl. Opt. 37, 6951–6968 (1998). [CrossRef]
  32. M. C. Bashaw, J. F. Heanue, L. Hesselink, “Organization of data for monochromatic multiplexed volume holography,” J. Opt. Soc. Am. A 13, 2174–2186 (1996). [CrossRef]
  33. C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 10, 2547–2550 (1993).
  34. X. Yi, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994). [CrossRef] [PubMed]
  35. E. S. Maniloff, K. M. Johnson, “Effects of scattering on the dynamics of holographic recording and erasure in photorefractive lithium niobate,” J. Appl. Phys. 73, 541–547 (1993). [CrossRef]
  36. M. A. Neifeld, K. M. Chugg, B. M. King, “Parallel data detection in page oriented optical memory,” Opt. Lett. 21, 1481–1483 (1996). [CrossRef] [PubMed]
  37. C. L. Miller, B. R. Hunt, M. W. Marcellin, M. A. Neifeld, “Binary image reconstructions via 2D Viterbi search,” in Proceedings of IEEE International Conference on Image Processing1997 (IEEE, Piscataway, N.J., 1997), pp. 181–184.
  38. X. P. Chen, K. M. Chugg, “Near-optimal page detection for two-dimensional ISI/AWGN channels using concatenated modeling and iterative detection,” in Proceedings of the International Conference on Communications 1998 (IEEE, Piscataway, N.J., 1998), Paper S27P4.
  39. S. Gopalaswamy, B. V. Kumar, “Readback channel model for an optical tape system,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 222–229 (1994). [CrossRef]
  40. S. Gopalaswamy, B. V. Kumar, “Decision feedback equalization with multi-channel readback in high density optical recording,” in Coding and Signal Processing for Information Storage, M. N. Armenise, S. Najafi, eds., Proc. SPIE2605, 65–76 (1995). [CrossRef]
  41. H. Stark, J. W. Woods, Probability, Random Processes, and Estimation Theory for Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1986).
  42. I. S. Reed, “On a moment theorem for complex Gaussian processes,” IRE Trans. Inf. Theory IT-8, 194–195 (1962). [CrossRef]
  43. J. G. Proakis, Digital Communications, 3rd ed. (McGraw-Hill, New York, 1995).
  44. K. M. Chugg, “Performance of optimal digital page detection in a two-dimensional ISI/AWGN channel,” in Proceedings of the 30th Annual Asilomar Conference on Signal, Systems and Computers (IEEE Computer Society Press, Los Alamitos, Calif., 1996), Paper TP4-8.
  45. E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991). [CrossRef]
  46. D. Brady, D. Psaltis, “Information capacity of 3D holographic data storage,” Opt. Quantum Electron. 25, 597–610 (1993). [CrossRef]
  47. M. A. Neifeld, M. McDonald, “Lens design issues impacting page access to volume optical media,” Opt. Commun. 120, 8–14 (1995). [CrossRef]
  48. D. Mendlovic, A. W. Lohmann, “Space–bandwidth product adaptation and its application to superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997). [CrossRef]
  49. A. J. denDekker, A. vandenBos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547–557 (1997). [CrossRef]
  50. A. Strasser, E. Maniloff, K. Johnson, S. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–8 (1989). [CrossRef] [PubMed]
  51. D. Brady, D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992). [CrossRef]
  52. B. M. King, M. A. Neifeld, “Parallel detection algorithm for page-oriented optical memories,” Appl. Opt. 37, 6275–6298 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited