OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 568–573

Determination of the piezo-optical properties of semiconductors above the fundamental gap by means of reflectance difference spectroscopy

D. Rönnow, L. F. Lastras-Martínez, M. Cardona, and P. V. Santos  »View Author Affiliations

JOSA A, Vol. 16, Issue 3, pp. 568-573 (1999)

View Full Text Article

Acrobat PDF (251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reflectance difference spectroscopy (RDS) has been used to determine piezo-optical coefficients of semiconductors above the fundamental gap. The high sensitivity of the RDS technique allows the determination of these coefficients with the use of very small uniaxial stresses (<0.05 GPa). By measurement of RDS on samples of cubic crystals under uniaxial stress along the [001] and [111] crystal directions, the piezo-optical coefficients P<sub>11</sub>−P<sub>12</sub> and P<sub>44</sub>, respectively, were determined. Measurements on InP give results in good agreement with previously reported values obtained by ellipsometry. RDS was used successfully to determine the spectral dependence of P<sub>11</sub>−P<sub>12</sub> in ZnSe, a II–VI semiconductor too brittle to support the stresses required for ellipsometric measurements. RDS is less sensitive than ellipsometry to the presence of surface overlayers.

© 1999 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5700) Instrumentation, measurement, and metrology : Reflection
(160.6000) Materials : Semiconductor materials
(260.1180) Physical optics : Crystal optics
(260.2130) Physical optics : Ellipsometry and polarimetry
(300.6470) Spectroscopy : Spectroscopy, semiconductors

D. Rönnow, L. F. Lastras-Martínez, M. Cardona, and P. V. Santos, "Determination of the piezo-optical properties of semiconductors above the fundamental gap by means of reflectance difference spectroscopy," J. Opt. Soc. Am. A 16, 568-573 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. Brewster, “On the effects of simple pressure in producing that species of crystallization which forms two oppositely polarised images, and exhibits the complementary colours by polarised light,” Philos. Trans. R. Soc. London 105, 60–64 (1815); “On the communication of the structure of doubly refracting crystals to glass, muriate of soda, fluor spar, and other substances, by mechanical compression and dilatation,” 106, 156–178 (1816).
  2. H.-J. Hoffman, in The Properties of Optical Glass, H. Bach and N. Neuroth, eds. (Springer, Heidelberg, 1995), Chap. 2.4.
  3. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, UK, 1976).
  4. A. Feldman, “High-stress optical birefringence in pure and degenerate n-type germanium,” Phys. Rev. 150, 748–757 (1966).
  5. A. Feldman and D. Horowitz, “Dispersion of the piezobirefringence of GaAs,” J. Appl. Phys. 39, 5597–5599 (1968).
  6. C. W. Higginbotham, M. Cardona, and F. H. Pollak, “Intrinsic piezobirefringence of Ge, Si, and GaAs,” Phys. Rev. 184, 821–829 (1969).
  7. R. W. Dixon and M. G. Cohen, “A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate,” Appl. Phys. Lett. 8, 205–207 (1966).
  8. M. Chandrasekhar, M. H. Grimsditch, and M. Cardona, “Piezobirefringence above the fundamental edge in Si,” Phys. Rev. B 18, 4301–4311 (1978).
  9. M. H. Grimsditch, E. Kisela, and M. Cardona, “Real and imaginary elasto-optic constants of silicon,” Phys. Status Solidi A 60, 135–143 (1980).
  10. G. W. Gobeli and E. O. Kane, “Dependence of the optical constants of silicon on uniaxial stress,” Phys. Rev. Lett. 15, 142–146 (1965).
  11. D. D. Sell and E. O. Kane, “Piezoreflectance of germanium from 1.9 to 2.8 eV,” Phys. Rev. 185, 1103–1114 (1969).
  12. J. Musilova, “Piezoreflectance study of E1 and E2 transitions in germanium from 107 to 326 K,” Phys. Status Solidi B 101, 85–93 (1980).
  13. P. Etchegoin, J. Kircher, M. Cardona, and C. Grein, “Piezo-optical response of Ge in the visible–uv range,” Phys. Rev. B 45, 11721–11735 (1992).
  14. P. Etchegoin, J. Kircher, M. Cardona, C. Grein, and E. Bustarret, “Piezo-optics of GaAs,” Phys. Rev. B 46, 15139–15149 (1992).
  15. P. Etchegoin, J. Kircher, and M. Cardona, “Elasto-optical constants of Si,” Phys. Rev. B 47, 10292–10303 (1993).
  16. D. Rönnow, P. Santos, M. Cardona, E. Anastassakis, and M. Kuball, “Piezo-optics of InP in the visible–ultraviolet range,” Phys. Rev. B 57, 4432–4442 (1998).
  17. M. Cardona, in Light Scattering in Solids II, M. Cardona and G. Güntherodt, eds. (Springer, Berlin, 1982), p. 19.
  18. D. E. Aspnes, “Above-bandgap optical anisotropies in cubic semiconductors: a visible–near ultraviolet probe of surfaces,” J. Vac. Sci. Technol. B 3, 1498–1506 (1985).
  19. L. F. Lastras-Martínez and A. Lastras-Martínez, “Reflectance anisotropy of GaAs(100): dislocation-induced piezo-optic effects,” Phys. Rev. B 54, 10726–10735 (1996).
  20. S. M. Scholz, A. B. Müller, W. Richter, D. R. T. Zahn, D. I. Westwood, D. A. Woolf, and R. H. Williams, “Analysis of molecular-beam epitaxial growth of InAs on GaAs(100) by reflection anisotropy spectroscopy,” J. Vac. Sci. Technol. B 10, 1710–1715 (1992).
  21. J.-T. Zettler, T. Wethkamp, M. Zorn, M. Pristovsek, C. Meyne, K. Ploska, and W. Richter, “Growth oscillations with monolayer periodicity monitored by ellipsometry during metalorganic vapor phase epitaxy of GaAs(001),” Appl. Phys. Lett. 67, 3783 (1995).
  22. B. Koopmans, B. Richards, P. Santos, K. Eberl, and M. Cardona, “In-plane optical anisotropy of GaAs/AlAs multiple quantum wells probed by microscopic reflectance difference spectroscopy,” Appl. Phys. Lett. 69, 782–784 (1996).
  23. D. Toet, B. Koopmans, P. V. Santos, R. B. Bergmann, and B. Richards, “Growth of polycrystalline silicon on glass by selective laser-induced nucleation,” Appl. Phys. Lett. 69, 3719–3721 (1996).
  24. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
  25. B. Rockwell, H. R. Chandrasekhar, M. Chandrasekhar, A. K. Ramdas, M. Kobayashi, and R. L. Gunshor, “Pressure tuning of strains in semiconductor heterostructures: (ZnSe epilayer)/(GaAs epilayer),” Phys. Rev. B 44, 11307–11314 (1991).
  26. D. E. Aspnes, “Analysis of modulation spectra of stratified media,” J. Opt. Soc. Am. 63, 1380–1390 (1973).
  27. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  28. D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A 6, 1327–1332 (1988).
  29. Oriel model 7340, Oriel Corporation, Stratford, Conn. 06447.
  30. Hamamatsu C2177–01, Hamamatsu Photonics K.K. 325–6 Sunayama-cho, Hamamatsu, Shizuoka, Japan.
  31. Spex model 1680, Spex Industries, Edison, N.J. 08820.
  32. Hinds PEM-90 with an I/FS50 optical head, Hinds Instruments, Hillsboro, Oreg. 97124.
  33. Kepco model 2000B, Kepco Inc., 131–38 Sanford Avenue, Flushing, N.Y. 11352.
  34. EG & G model 5210, EG & G Princeton Applied Research, 45 William Street, Wellesley, Mass. 02181.
  35. J. Kircher, W. Böhringer, W. Dietrich, H. Hirt, P. Etchegoin, and M. Cardona, “Design of a compact uniaxial stress apparatus for optical measurements,” Rev. Sci. Instrum. 63, 3733–3735 (1992).
  36. P. V. Santos, N. Esser, J. Groenen, M. Cardona, W. G. Schmidt, and F. Bechstedt, “Hydrogen interaction with Sb-terminated GaAs and InP (110) surfaces,” Phys. Rev. B 52, 17379–17385 (1995).
  37. S. Zollner, “Model dielectric functions for native oxides on compound semiconductors,” Appl. Phys. Lett. 63, 2523–2524 (1993).
  38. C. C. Kim and S. Sivananthan, “Optical properties of ZnSe and its modeling,” Phys. Rev. B 53, 1475–1484 (1996).
  39. D. E. Aspnes, “Approximate solution of ellipsometric equations for optically biaxial crystal,” J. Opt. Soc. Am. 70, 1275–1277 (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited