OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 633–646

The Rose model, revisited

Arthur E. Burgess  »View Author Affiliations


JOSA A, Vol. 16, Issue 3, pp. 633-646 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000633


View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In 1946 and 1948, three very important papers by RoseAlbert [J. Soc. Motion Pict. Eng. 47, 273 (1946); J. Opt. Soc. Am. 38, 196 (1948); MartonL., ed. (Academic, New York, 1948)] were published on the role that photon fluctuations have in setting fundamental performance limits for both human vision and electronic imaging systems. The papers were important because Rose demonstrated that the performance of imaging devices can be evaluated with an absolute scale (quantum efficiency). The analysis of human visual signal detection used in these papers (developed before the formal theory of signal detectability) was based on an approach that has come to be known as the Rose model. In spite of its simplicity, the Rose model is a very good approximation of a Bayesian ideal observer for the carefully and narrowly defined conditions that Rose considered. This simple model can be used effectively for back-of-the-envelope calculations, but it needs to be used with care because of its limited range of validity. One important conclusion arising from Rose’s investigations is that pixel signal-to-noise ratio is not a good figure of merit for imaging systems or components, even though it is still occasionally used as such by some researchers. In the present study, (1) aspects of signal detection theory are presented, (2) Rose’s model is described and discussed, (3) pixel signal-to-noise ratio is discussed, and (4) progress on modeling human noise-limited performance is summarized. This study is intended to be a tutorial with presentation of the main ideas and provision of references to the (dispersed) technical literature.

© 1999 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(040.1880) Detectors : Detection
(100.2960) Image processing : Image analysis
(110.3000) Imaging systems : Image quality assessment
(110.4280) Imaging systems : Noise in imaging systems
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7310) Vision, color, and visual optics : Vision

History
Original Manuscript: June 9, 1998
Manuscript Accepted: August 17, 1998
Published: March 1, 1999

Citation
Arthur E. Burgess, "The Rose model, revisited," J. Opt. Soc. Am. A 16, 633-646 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-3-633

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited