OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 633–646

The Rose model, revisited

Arthur E. Burgess  »View Author Affiliations


JOSA A, Vol. 16, Issue 3, pp. 633-646 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000633


View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In 1946 and 1948, three very important papers by RoseAlbert [J. Soc. Motion Pict. Eng. 47, 273 (1946); J. Opt. Soc. Am. 38, 196 (1948); MartonL., ed. (Academic, New York, 1948)] were published on the role that photon fluctuations have in setting fundamental performance limits for both human vision and electronic imaging systems. The papers were important because Rose demonstrated that the performance of imaging devices can be evaluated with an absolute scale (quantum efficiency). The analysis of human visual signal detection used in these papers (developed before the formal theory of signal detectability) was based on an approach that has come to be known as the Rose model. In spite of its simplicity, the Rose model is a very good approximation of a Bayesian ideal observer for the carefully and narrowly defined conditions that Rose considered. This simple model can be used effectively for back-of-the-envelope calculations, but it needs to be used with care because of its limited range of validity. One important conclusion arising from Rose’s investigations is that pixel signal-to-noise ratio is not a good figure of merit for imaging systems or components, even though it is still occasionally used as such by some researchers. In the present study, (1) aspects of signal detection theory are presented, (2) Rose’s model is described and discussed, (3) pixel signal-to-noise ratio is discussed, and (4) progress on modeling human noise-limited performance is summarized. This study is intended to be a tutorial with presentation of the main ideas and provision of references to the (dispersed) technical literature.

© 1999 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(040.1880) Detectors : Detection
(100.2960) Image processing : Image analysis
(110.3000) Imaging systems : Image quality assessment
(110.4280) Imaging systems : Noise in imaging systems
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7310) Vision, color, and visual optics : Vision

History
Original Manuscript: June 9, 1998
Manuscript Accepted: August 17, 1998
Published: March 1, 1999

Citation
Arthur E. Burgess, "The Rose model, revisited," J. Opt. Soc. Am. A 16, 633-646 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-3-633


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rose, “A unified approach to the performance of photographic film, television pickup tubes and the human eye,” J. Soc. Motion Pict. Eng. 47, 273–294 (1946).
  2. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196–208 (1948). [CrossRef] [PubMed]
  3. A. Rose, “Television pickup tubes and the problem of vision,” in Advances in Electronics and Electron Physics, L. Marton, ed. (Academic, New York, 1948), Vol. 1, pp. 131–166.
  4. A. Rose, “Quantum and noise limitations of the visual process,” J. Opt. Soc. Am. 43, 715–716 (1953). [CrossRef] [PubMed]
  5. I. Cunningham, R. Shaw, “Signal-to-noise optimization of medical imaging systems,” J. Opt. Soc. Am. A 16, 621–632 (1999). [CrossRef]
  6. W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory PGIT-4, 171–212 (1954). [CrossRef]
  7. D. Van Metter, D. Middleton, “Modern statistical approaches to reception in communication theory,” IRE Trans. Inf. Theory PGIT-4, 119–141 (1954). [CrossRef]
  8. P. F. Sharp, C. E. Metz, R. F. Wagner, K. J. Myers, A. E. Burgess, , “Medical imaging: the assessment of image quality” (International Commission on Radiological Units and Measurements, Bethesda, Md., 1996).
  9. H. H. Barrett, “Objective assessment of image quality: effects of quantum noise and object variability,” J. Opt. Soc. Am. A 7, 1266–1278 (1990). [CrossRef] [PubMed]
  10. H. H. Barrett, J. L. Denny, R. F. Wagner, K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier cross talk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12, 834–852 (1995). [CrossRef]
  11. H. H. Barrett, C. K. Abbey, E. Clarkson, “Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions,” J. Opt. Soc. Am. A 15, 1520–1535 (1998). [CrossRef]
  12. R. B. Barnes, M. Czerny, “Lasst sich ein Schroteffekt der Photonen mit dem Auge beobachten?” Z. Phys. 79, 436–449 (1932). [CrossRef]
  13. S. Hecht, “Quantum relations of vision,” J. Opt. Soc. Am. 32, 42–49 (1942). [CrossRef]
  14. H. de Vries, “The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye,” Physica 10, 553–564 (1943). [CrossRef]
  15. O. H. Schade, Image Quality: a Comparison of Photographic and Television Systems (RCA Laboratories, Princeton, N.J., 1975).
  16. R. F. Wagner, “Decision theory and the detail signal-to-noise ratio of Otto Schade,” Photograph. Sci. Eng. 22, 41–46 (1977).
  17. R. F. Wagner, “Toward a unified view of radiological imaging systems. Part II: Noisy images,” Med. Phys. 4, 279–296 (1977). [CrossRef] [PubMed]
  18. J. W. Coltman, “Fluoroscopic image brightening by electronic means,” Radiology 51, 359–366 (1948). [PubMed]
  19. R. E. Sturm, R. H. Morgan, “Screen intensification systems and their limitations,” Am. J. Roentgenol. 62, 617–634 (1949).
  20. D. O. North, “Analysis of the factors which determine signal–noise discrimination in pulsed carrier systems,” (1943),reprinted in Proc. IRE 51, 1016–1028 (1963). [CrossRef]
  21. N. Wiener, The Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Wiley, New York, 1960).
  22. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991).
  23. K. R. Castleman, Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1996).
  24. J. L. Harris, “Resolving power and decision theory,” J. Opt. Soc. Am. 54, 606–611 (1964). [CrossRef]
  25. J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, New York, 1986).
  26. R. A. Fisher, Statistical Methods for Research Workers (Oliver and Boyd, Edinburgh, 1925).
  27. J. Neyman, E. S. Pearson, “On the problem of the most efficient tests of statistical hypotheses,” Philos. Trans. R. Soc. London Ser. A 231, 289 (1933). [CrossRef]
  28. A. Wald, Sequential Decision Functions (Wiley, New York, 1950).
  29. J. A. Swets, Signal Detection and Recognition by Human Observers (Wiley, New York, 1964).
  30. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).
  31. H. L. Van Trees, Detection, Estimation and Modulation Theory (Wiley, New York, 1968), Vols. 1–3.
  32. C. W. Helstrom, Elements of Signal Detection and Estimation (Prentice-Hall PTR, Englewood Cliffs, N.J., 1995).
  33. K. Fukunaga, Introduction to Statistical Pattern Recognition (Academic, New York, 1972).
  34. C. E. Metz, “ROC methodology in radiological imaging,” Invest. Radiol. 21, 720–732 (1986). [CrossRef] [PubMed]
  35. C. E. Metz, “Some practical issues of experimental design and data analysis in radiological ROC studies,” Invest. Radiol. 24, 234–245 (1989). [CrossRef] [PubMed]
  36. D. G. Brown, M. F. Insana, M. Tapiovaars, “Detection performance of the ideal decision function and its MacLaurin expansion,” J. Acoust. Soc. Am. 97, 379–398 (1995). [CrossRef] [PubMed]
  37. A. E. Burgess, “Comparison of receiver operating characteristic and forced choice observer performance measurement methods,” Med. Phys. 22, 643–655 (1995). [CrossRef] [PubMed]
  38. J. A. Swets, BBN Technologies, Cambridge, Mass. 02138 and Brigham and Women’s Hospital, Boston, Mass. 02115 (personal communication, 1998).
  39. W. P. Tanner, T. G. Birdsall, “Definitions of d′ and η as psychophysical measures,” J. Acoust. Soc. Am. 30, 922–928 (1958). [CrossRef]
  40. A. Rose, “The relative sensitivities of television pickup tubes, photographic film and the human eye,” Proc. IRE 30, 293–300 (1942). [CrossRef]
  41. O. Schade, “Electro-optical characteristics of television systems,” RCA Rev. 9, 5–37 (1948).
  42. N. A. Macmillan, C. D. Creelman, Detection Theory: A User’s Guide (Cambridge U. Press, Cambridge, UK, 1991).
  43. A. E. Burgess, H. Ghandeharian, “Visual signal detection. II. Signal location identification,” J. Opt. Soc. Am. A 1, 906–910 (1984). [CrossRef] [PubMed]
  44. A. E. Burgess, “Visual signal detection. III. On Bayesian use of prior knowledge and cross correlation,” J. Opt. Soc. Am. A 2, 1498–1507 (1985). [CrossRef] [PubMed]
  45. A. E. Burgess, B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617–627 (1988). [CrossRef] [PubMed]
  46. S. Daly, “The visual differences predictor: an algorithm for the assessment of image fidelity,” in Digital Images and Human Vision, A. B. Watson, ed. (MIT, Cambridge, Mass., 1993).
  47. A. B. Watson, ed., Digital Images and Human Vision (MIT, Cambridge, Mass., 1993).
  48. H. L. Kundel, “Images, image quality, and observer performance,” Radiology 132, 265–271 (1979). [PubMed]
  49. R. F. Wagner, D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys. Med. Biol. 30, 489–518 (1985). [CrossRef]
  50. A. Rose, Vision—Human and Electronic (Plenum, New York, 1973).
  51. D. G. Pelli, “The quantum efficiency of vision,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, Cambridge, UK, 1990), pp. 3–24.
  52. T. E. Cohn, ed., Visual Detection, Vol. 3 of Collected Works in Optics (Optical Society of America, Washington, D.C., 1993).
  53. H. B. Barlow, “The efficiency of detecting changes in density in random dot patterns,” Vision Res. 18, 637–650 (1977). [CrossRef]
  54. A. E. Burgess, H. B. Barlow, “The efficiency of numerosity discrimination in random dot images,” Vision Res. 23, 811–819 (1983). [CrossRef]
  55. A. E. Burgess, R. J. Jennings, R. F. Wagner, H. B. Barlow, “Efficiency of human visual discrimination,” Science 214, 93–94 (1981). [CrossRef] [PubMed]
  56. A. E. Burgess, H. Ghandeharian, “Visual signal detection. I. Ability to use phase information,” J. Opt. Soc. Am. A 1, 900–905 (1984). [CrossRef] [PubMed]
  57. D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508–1530 (1985). [CrossRef] [PubMed]
  58. D. A. Kersten, “Spatial summation in visual noise,” Vision Res. 24, 1977–1990 (1983). [CrossRef]
  59. R. Nasanen, H. Kukkonen, J. Ravamo, “Spatial integration of band-pass filtered patterns in noise,” Vision Res. 33, 903–911 (1993). [CrossRef] [PubMed]
  60. J. Rovamo, J. Mustonen, R. Nasanen, “Modeling contrast sensitivity as a function of retinal illuminance and grating area,” Vision Res. 34, 1301–1314 (1994). [CrossRef] [PubMed]
  61. D. Kersten, “Statistical efficiency for the detection of visual noise,” Vision Res. 27, 1029–1040 (1986). [CrossRef]
  62. M. Pavel, G. Sperling, T. Reidl, A. Vanderbeek, “Limits of visual communication: the effect of signal-to-noise ratio on the intelligibility of American Sign Language,” J. Opt. Soc. Am. A 4, 2355–2365 (1987). [CrossRef] [PubMed]
  63. B. S. Tjan, G. E. Legge, W. L. Braje, D. Kersten, “Human efficiency for recognizing 3-D objects in luminance noise,” Vision Res. 35, 3053–3069 (1995). [CrossRef] [PubMed]
  64. T. Kumar, P. Zhou, D. A. Glaser, “Comparison of human performance with algorithms for estimating fractal dimension of fractional Brownian statistics,” J. Opt. Soc. Am. A 10, 1136–1146 (1993). [CrossRef] [PubMed]
  65. K. J. Myers, M. C. Borgstrom, H. H. Barrett, D. D. Patton, G. W. Seeley, “Effect of noise correlation on detectability of disk signals in medical imaging,” J. Opt. Soc. Am. A 2, 1752–1759 (1985). [CrossRef] [PubMed]
  66. K. J. Myers, H. H. Barrett, “Addition of a channel mechanism to the ideal-observer model,” J. Opt. Soc. Am. A 4, 2447–2457 (1987). [CrossRef] [PubMed]
  67. J. P. Rolland, H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt. Soc. Am. A 9, 649–658 (1992). [CrossRef] [PubMed]
  68. A. E. Burgess, X. Li, C. K. Abbey, “Nodule detection in two component noise: toward patient structure,” in Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 2–13 (1997). [CrossRef]
  69. A. E. Burgess, “Visual signal detection with two-component noise: low-pass spectrum effects,” J. Opt. Soc. Am. A 16, 694–704 (1999). [CrossRef]
  70. K. H. Hanson, “Variations in task and the ideal observer,” in Application of Optical Instrumentation in Medicine XI: Medical Image Production, Processing, Display and Archiving, R. H. Schneider, S. J. Dwyer, eds., Proc. SPIE419, 60–67 (1983). [CrossRef]
  71. H. H. Barrett, J. P. Rolland, J. Yao, K. J. Myers, “Model observers for assessment of image quality,” Proc. Natl. Acad. Sci. USA 90, 9758–9765 (1993). [CrossRef] [PubMed]
  72. T. W. Anderson, Introduction to Multivariate Statistical Analysis, 2nd ed. (Wiley, New York, 1984).
  73. J. P. Cobb, R. E. Moss, “The four variables of visual threshold,” J. Franklin Inst. 205, 831 (1928). [CrossRef]
  74. D. H. Kelly, “Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity,” J. Opt. Soc. Am. A 1, 107–113 (1984). [CrossRef] [PubMed]
  75. J. S. Whiting, E. Carterette, D. Honig, N. Eigler, “Observer performance in dynamic displays: effect of frame rate on visual signal detection in noisy images,” in Medical Imaging 1991: Image Perception, H. L. Kundel, Proc. SPIE1453, 165–176 (1991). [CrossRef]
  76. M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Detection and discrimination of moving signals in Gaussian uncorrelated noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 9–25 (1996). [CrossRef]
  77. P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced-choice measurements,” Med. Phys. 23, 1833–1843 (1996). [CrossRef] [PubMed]
  78. M. J. Tapiovaara, “Efficiency of low-contrast detail detectability in fluoroscopic imaging,” Med. Phys. 24, 655–664 (1997). [CrossRef] [PubMed]
  79. R. Aufrichtig, C. W. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 13, 3167–3176 (1994). [CrossRef]
  80. D. L. Wilson, P. Xue, K. N. Jabri, R. Aufrichtig, “Perceived noise versus display noise in temporally filtered image sequences,” J. Electron. Imaging 5, 490–495 (1996). [CrossRef]
  81. M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Role of knowledge in human visual temporal integration in spatiotemporal noise,” J. Opt. Soc. Am. A 13, 1960–1968 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited