OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 694–704

Visual signal detection with two-component noise: low-pass spectrum effects

Arthur E. Burgess  »View Author Affiliations


JOSA A, Vol. 16, Issue 3, pp. 694-704 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000694


View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detection of signals in natural images and scenes is limited by both noise and structure. The purpose of this study is to investigate phenomenological issues of signal detection in two-component noise. One component had a broadband (white) spectrum designed to simulate image noise. The other component was filtered to simulate two classes of low-pass background structure spectra: Gaussian-filtered noise and power-law noise. Measurements of human and model observer performance are reported for several aperiodic signals and both classes of background spectra. Human results are compared with two classes of observer models and are fitted very well by suboptimal prewhitening matched filter models. The nonprewhitening model with an eye filter does not agree with human results when background-noise-component power spectrum bandwidths are less than signal energy bandwidths.

© 1999 Optical Society of America

OCIS Codes
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics

History
Original Manuscript: May 26, 1998
Revised Manuscript: October 22, 1998
Manuscript Accepted: November 5, 1998
Published: March 1, 1999

Citation
Arthur E. Burgess, "Visual signal detection with two-component noise: low-pass spectrum effects," J. Opt. Soc. Am. A 16, 694-704 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-3-694


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Burgess, X. Li, C. K. Abbey, “Visual signal detectability with two noise components: anomalous masking effects,” J. Opt. Soc. Am. A 14, 2420–2442 (1997). [CrossRef]
  2. J. P. Rolland, H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt. Soc. Am. A 9, 649–658 (1992). [CrossRef] [PubMed]
  3. A. E. Burgess, “Statistically defined backgrounds: performance of a modified nonprewhitening matched filter model,” J. Opt. Soc. Am. A 11, 1237–42 (1994). [CrossRef]
  4. S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, R. D. Nawfel, “Flattening of the contrast-detail curve for large lesion in CT liver images,” Med. Phys. 21, 1547–1555 (1994). [CrossRef] [PubMed]
  5. M. P. Eckstein, J. S. Whiting, “Visual signal detection in structured backgrounds. I. Effect of number of possible spatial locations and signal contrast,” J. Opt. Soc. Am. A 13, 1777–1787 (1996). [CrossRef]
  6. F. O. Bouchud, F. R. Verdun, J. F. Valley, C. Hessler, R. Moeckli, “The importance of anatomical noise in mammography,” in Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 74–80 (1997). [CrossRef]
  7. M. P. Eckstein, A. J. Ahumada, A. B. Watson, “Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,” J. Opt. Soc. Am. A 14, 2406–2419 (1997). [CrossRef]
  8. A. J. Ahumada, B. L. Beard, “Image discrimination models predict detection in fixed but not random noise,” J. Opt. Soc. Am. A 14, 2471–2476 (1997). [CrossRef]
  9. D. O. North, “Analysis of the factors which determine signal-noise discrimination in pulsed carrier systems,” (1943),reprinted in Proc. IRE 51, 1016–1028 (1963). [CrossRef]
  10. R. F. Wagner, “Toward a unified view of radiological imaging systems. Part II: Noisy images,” Med. Phys. 4, 279–296 (1977). [CrossRef] [PubMed]
  11. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, G. W. Seeley, “Effect of noise correlation on detectability of disk signals in medical imaging,” J. Opt. Soc. Am. A 2, 1752–1759 (1985). [CrossRef] [PubMed]
  12. A. E. Burgess, B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617–627 (1988). [CrossRef] [PubMed]
  13. R. D. Fiete, H. H. Barrett, W. E. Smith, K. J. Myers, “Hotelling trace criterion and its correlation with human-observer performance,” J. Opt. Soc. Am. A 4, 945–953 (1987). [CrossRef] [PubMed]
  14. H. H. Barrett, J. Yao, J. P. Rolland, K. J. Myers, “Model observers for assessment of image quality,” Proc. Natl. Acad. Sci. USA 90, 9758–9765 (1993). [CrossRef] [PubMed]
  15. W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory PGIT-4, 171–212 (1954). [CrossRef]
  16. K. R. Castleman, Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1996).
  17. P. G. J. Barten, “The SQRI method: a new method for the evaluation of visible resolution on a display,” Proc. Soc. Inf. Disp. 28, 253–262 (1987).
  18. K. J. Myers, H. H. Barrett, “Addition of a channel mechanism to the ideal-observer model,” J. Opt. Soc. Am. A 4, 2447–2457 (1987). [CrossRef] [PubMed]
  19. N. Graham, “Complex channels, early nonlinearities, and normalization in texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Mov-shon, eds. (MIT, Cambridge, Mass., 1991), pp. 273–290.
  20. J. Yao, “Predicting human performance by model observers,” Ph.D. dissertation (University of Arizona, Tucson, Arizona, 1994).
  21. A. J. Ahumada, A. B. Watson, “Equivalent-noise model for contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1133–1139 (1985). [CrossRef] [PubMed]
  22. J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, New York, 1986).
  23. A. Pentland, “Fractal-based descriptions of surfaces,” in Natural Computation, W. Richards, ed. (MIT, Cambridge, Mass., 1988), pp. 279–299.
  24. D. Knill, D. Field, D. Kersten, “Human discrimination of fractal images,” J. Opt. Soc. Am. A 7, 1113–1112 (1990). [CrossRef] [PubMed]
  25. D. Field, “Relations between the statistics of natural scenes and the response of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987). [CrossRef] [PubMed]
  26. Y. Tadmor, D. J. Tolhurst, “Both the phase and the amplitude spectrum may determine the appearance of natural images,” Vision Res. 33, 141–145 (1992). [CrossRef]
  27. J. H. van Hateren, “Theoretical predictions of spatiotemporal receptive fields of fly LMCs and experimental validation,” J. Comp. Physiol. A 171, 157–170 (1992).
  28. D. L. Ruderman, W. Bialeck, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994). [CrossRef] [PubMed]
  29. M. A. Webster, E. Miyahara, “Contrast adaptation and the spatial structure of natural images,” J. Opt. Soc. Am. A 14, 2355–2366 (1997). [CrossRef]
  30. F. O. Bouchud, F. R. Verdun, C. Hessler, J. F. Valley, “Detectability on radiological images: the influence of anatomical noise,” in Medical Imaging 1995: Image Perception, H. L. Kundel, ed., Proc. SPIE2436, 156–165 (1995). [CrossRef]
  31. B. Zheng, Y-H. Chang, D. Gur, “Adaptive computer-aided diagnosis scheme of digitized mammograms,” Acad. Radiol. 3, 806–814 (1996). [CrossRef] [PubMed]
  32. E. Samei, M. J. Flynn, G. H. Beue, E. Peterson, “Comparison of observer performance for real and simulated nodues in chest radiography,” in Medical Imaging: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 60–70 (1996). [CrossRef]
  33. F. Lefebvre, H. Benali, R. Gilles, R. DiPaola, “A simulation model of microcalcifications in digital mammograms,” Med. Phys. 21, 1865–1874 (1994). [CrossRef] [PubMed]
  34. M. Lanyi, Diagnosis and Differential Diagnosis of Breast Calcifications (Springer-Verlag, Berlin, 1986).
  35. A. E. Burgess, H. Ghandeharian, “Visual signal detection. II. Signal location identification,” J. Opt. Soc. Am. A 1, 906–910 (1984). [CrossRef] [PubMed]
  36. A. B. Watson, D. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983). [CrossRef] [PubMed]
  37. A. E. Burgess, K. Humphrey, R. F. Wagner, “Detection of bars and discs in quantum noise,” in Application of Optical Instrumentation in Medicine VII, J. E. Gray, ed., Proc. SPIE173, 34–40 (1979). [CrossRef]
  38. R. F. Wagner, M. F. Insana, D. G. Brown, B. S. Garra, R. J. Jennings, “Texture discrimination: radiologist, machine and man,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge U. Press, London, 1990), pp. 310–318.
  39. P. F. Judy, “Detection of clusters of simulated calcifications in lumpy noise backgrounds,” in Medical Imaging: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 39–46 (1996). [CrossRef]
  40. A. E. Burgess, X. Li, C. K. Abbey, “Nodule detection in two component noise: toward patient structure,” in Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 2–13 (1997). [CrossRef]
  41. A. E. Burgess, “Prewhitening revisited,” in Medical Imaging 1998: Image Perception, H. L. Kundel, ed., Proc. SPIE3340, 55–64 (1998). [CrossRef]
  42. J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395–397 (1994). [CrossRef] [PubMed]
  43. R. F. Quick, “A vector-magnitude model for contrast detection,” Kybernetik 16, 65–67 (1974). [CrossRef]
  44. G. Buchsbaum, A. Gottschalk, “Trichromaticity, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited