OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 705–717

Noise and its effects on photoreceptor temporal contrast sensitivity at low light levels

Eric P. Hornstein, David R. Pope, and Theodore E. Cohn  »View Author Affiliations

JOSA A, Vol. 16, Issue 3, pp. 705-717 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied photoreceptors in the locust (Schistocerca americanus) visual system to determine the extent to which quantal noise and intrinsic neural noise limit temporal sensitivity. Typical computational models of the temporal contrast sensitivity function are deterministic, reflect only filter characteristics, and lack explicit noise sources [J. Opt. Soc. Am. 58, 1133 (1968); Vision Res. 32, 1373 (1992)]. We report here that the temporal contrast sensitivity function, at low light levels, is not simply the reflection of a filter function. Our evidence suggests that, at low backgrounds, noise, in conjunction with temporal filtering, plays a role in shaping the temporal contrast sensitivity function. At a given low adaptation level, quantal noise limits sensitivity at low temporal frequencies, while intrinsic noise limits sensitivity at relatively higher temporal frequencies.

© 1999 Optical Society of America

OCIS Codes
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

Original Manuscript: June 1, 1998
Revised Manuscript: November 3, 1998
Manuscript Accepted: November 12, 1998
Published: March 1, 1999

Eric P. Hornstein, David R. Pope, and Theodore E. Cohn, "Noise and its effects on photoreceptor temporal contrast sensitivity at low light levels," J. Opt. Soc. Am. A 16, 705-717 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Baylor, “How photons start vision,” Proc. Natl. Acad. Sci. USA 93, 560–565 (1996). [CrossRef] [PubMed]
  2. E. N. Pugh, T. D. Lamb, “Amplification and kinetics of the activation steps in phototransduction,” Biochem. Biophys. Acta 1141, 111–149 (1993). [PubMed]
  3. K.-W. Yau, “Phototransduction mechanisms in retinal rods and cones. The Friedenwald lecture,” Invest. Ophthalmol. Visual Sci. 35, 9–32 (1994).
  4. Y. Koutalos, K.-W. Yau, “Regulation of sensitivity in vertebrate rod photoreceptors by calcium,” Trends Neurosci. 19, 73–81 (1996). [CrossRef] [PubMed]
  5. R. Ranganathan, D. M. Malicki, C. S. Zucker, “Signal transduction in Drosophila photoreceptors,” Annu. Rev. Neurosci. 18, 283–317 (1995). [CrossRef] [PubMed]
  6. C. S. Zucker, “The biology of vision in Drosophila,” Proc. Natl. Acad. Sci. USA 93, 571–576 (1996). [CrossRef]
  7. C. Montell, “TRP trapped in fly signaling web,” Curr. Opin. Neurobiol. 8, 389–397 (1998). [CrossRef] [PubMed]
  8. O. H. Shade, “Electro-optical characteristics of television systems. I. Characteristics of vision and visual systems,” RCA Rev. 9, 5–37 (1948).
  9. H. De Lange, “Experiments on flicker and some calculations on an electrical analogue of the fovea systems,” Physica 28, 935–950 (1952). [CrossRef]
  10. H. De Lange Dzn, “Research into the dynamic nature of the human fovea→cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light,” J. Opt. Soc. Am. 48, 777–784 (1958). [CrossRef]
  11. D. H. Kelly, “Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements,” J. Opt. Soc. Am. 51, 422–429 (1961). [CrossRef] [PubMed]
  12. D. H. Kelly, “Adaptation effects on spatio-temporal sine-wave thresholds,” Vision Res. 12, 89–101 (1972). [CrossRef] [PubMed]
  13. A. B. Watson, “Temporal sensitivity,” in Handbook of Perception and Human Performance, D. I. A. MacLeod, J. P. Thomas, eds. (Wiley, New York, 1986), pp. 1–43.
  14. K. Donner, S. Hemila, “Modelling the spatio-temporal modulation response of ganglion cells with difference-of-Gaussians receptive fields: relation to photoreceptor response kinetics,” Visual Neurosci. 13, 173–186 (1996). [CrossRef]
  15. G. F. Fuortes, A. L. Hodgkin, “Changes in time scale and sensitivity in the ommatidia of Limulus,” J. Physiol. (London) 172, 239–263 (1964).
  16. W. Bialek, W. G. Owen, “Temporal filtering in retinal bipolar cells: elements of an optimal computation?” Biophys. J. 58, 1227–1233 (1990). [CrossRef] [PubMed]
  17. H. B. Barlow, “Retinal noise and absolute threshold,” J. Opt. Soc. Am. 46, 634–639 (1956). [CrossRef] [PubMed]
  18. W. R. Levick, L. N. Thibos, T. E. Cohn, D. Catanzaro, H. B. Barlow, “Performance of cat retinal ganglion cells at low light levels,” J. Gen. Physiol. 82, 405–426 (1983). [CrossRef] [PubMed]
  19. W. Bialek, “Physical limits to sensation and perception,” Annu. Rev. Biophys. Biophys. Chem. 16, 455–478 (1987). [CrossRef] [PubMed]
  20. D. R. Copenhagen, K. Donner, T. Reuter, “Ganglion cell performance at absolute threshold in toad retina: effects of dark events in rods,” J. Physiol. (London) 393, 667–680 (1987).
  21. A.-C. Aho, K. Donner, C. Hyden, L. O. Larsen, T. Reuter, “Low retinal noise in animals with low body temperature allows high visual sensitivity,” Nature (London) 334, 348–350 (1988). [CrossRef]
  22. R. B. Barlow, R. R. Birge, E. Kaplan, J. R. Tallent, “On the molecular origin of photoreceptor noise,” Nature (London) 366, 64–66 (1993). [CrossRef]
  23. K. Donner, A. Koskelainen, K. Djupsund, S. Hemila, “Changes in retinal time scale under background light: observations on rods and ganglion cells in the frog retina,” Vision Res. 35, 2255–2266 (1995). [CrossRef] [PubMed]
  24. H. de Vries, “The quantum character of light and its bearing upon the threshold of vision, the differential sensitivity and acuity of the eye,” Physica 10, 553–564 (1943). [CrossRef]
  25. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196–208 (1948). [CrossRef] [PubMed]
  26. M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, W. J. McGill, “Multiplication noise in the human visual system at threshold: 1. Quantum fluctuations and minimum detectable energy,” J. Opt. Soc. Am. 72, 419–431 (1982). [CrossRef] [PubMed]
  27. S. Yeandle, “Evidence of quantized slow potentials in the eye of Limulus,” Am. J. Ophthalmol. 46, 82–87 (1958).
  28. H. B. Barlow, “Retinal and central factors in human vision limited by noise,” in Vertebrate Photoreception, H. B. Barlow, P. Fatt, eds. (Academic, London, 1977), pp. 337–358.
  29. D. A. Baylor, G. Matthews, K. W. Yau, “Two components of electrical dark noise in toad retinal rod outer segments,” J. Physiol. (London) 309, 591–621 (1980).
  30. R. D. Bodoia, P. B. Detwiler, “Patch-clamp recordings of the light-sensitive dark noise in retinal rods from lizard and frog,” J. Physiol. (London) 367, 183–216 (1985).
  31. R. F. Hess, K. Nordby, “Spatial and temporal limits of vision of the achromat,” J. Physiol. (London) 371, 365–385 (1986).
  32. R. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research, N. N. Osborne, G. J. Chader, eds. (Pergamon, Oxford, 1984), pp. 263–346.
  33. G. Sperling, M. M. Sondhi, “Models for visual luminance discrimination and flicker detection,” J. Opt. Soc. Am. 58, 1133–1145 (1968). [CrossRef] [PubMed]
  34. L. Matin, “Critical duration, the differential luminance threshold, critical flicker frequency, and visual adaptation: a theoretical treatment,” J. Opt. Soc. Am. 58, 404–415 (1968). [CrossRef] [PubMed]
  35. F. A. Dodge, B. W. Knight, J. Toyoda, “Voltage noise in Limulus visual cells,” Science 160, 88–90 (1968). [CrossRef] [PubMed]
  36. D. A. Baylor, A. L. Hodgkin, T. D. Lamb, “Reconstruction of the electrical responses of turtle cones to flashes and steps of light,” J. Physiol. (London) 242, 759–791 (1974).
  37. D. H. Kelly, “Diffusion model of linear flicker responses,” J. Opt. Soc. Am. 59, 1665–1670 (1969). [CrossRef] [PubMed]
  38. D. H. Kelly, R. M. Boynton, W. S. Baron, “Primate flicker sensitivity: psychophysics and electrophysiology,” Science 194, 1077–1079 (1976). [CrossRef] [PubMed]
  39. D. H. Kelly, “Human flicker sensitivity: two stages of retinal diffusion,” Science 202, 896–899 (1978). [CrossRef] [PubMed]
  40. D. Tranchina, J. Gordon, R. M. Shapley, “Retinal light adaptation—evidence for a feedback mechanism,” Nature (London) 310, 314–316 (1984). [CrossRef]
  41. K. Purpura, D. Tranchina, E. Kaplan, R. M. Shapley, “Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells,” Visual Neurosci. 4, 75–93 (1990). [CrossRef]
  42. N. Graham, D. C. Hood, “Quantal noise and decision rules in dynamic models of light adaptation,” Vision Res. 32, 779–787 (1992). [CrossRef] [PubMed]
  43. N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992). [CrossRef] [PubMed]
  44. S. B. Laughlin, “Matching coding, circuits, cells, and molecules to signals: general principles of retinal design in the fly’s eye,” in Progress in Retinal Research, N. N. Osborne, G. Chader, eds. (Pergamon, Oxford, 1994), pp. 165–196.
  45. E. P. Hornstein, “Sensitivity of the locust photoreceptor to temporal contrast stimuli: methods of measurement and factors that limit,” M.S. thesis (University of California, Berkeley, Berkeley, California, 1994).
  46. W. B. Davenport, W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958).
  47. T. E. Cohn, D. G. Green, W. P. Tanner, “Receiver operating characteristic analysis. Application to the study of quantum fluctuation effects in optic nerve of Rana pipiens,” J. Gen. Physiol. 66, 583–616 (1975). [CrossRef] [PubMed]
  48. T. E. Cohn, “Receiver operating characteristic analysis of sensitivity in neural systems,” Proc. IEEE 65, 781–786 (1977). [CrossRef]
  49. T. E. Cohn, “Receiver operating characteristic analysis of photoreceptor sensitivity,” IEEE Trans. Syst. Man Cybern. SMC-13, 873–881 (1983). [CrossRef]
  50. L. N. Thibos, W. R. Levick, T. E. Cohn, “Receiver operating characteristic curves for Poisson signals,” Biol. Cybern. 33, 57–61 (1979). [CrossRef]
  51. W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory PGIT 4, 171–212 (1954). [CrossRef]
  52. M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967). [CrossRef]
  53. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Peninsula, Los Altos, Calif., 1988).
  54. P. G. Lillywhite, “Single photon signals and transduction in an insect eye,” J. Comp. Physiol. 122, 189–200 (1977). [CrossRef]
  55. F. Wong, B. W. Knight, F. A. Dodge, “Dispersion of latencies in photoreceptors of Limulus and the adapting bump model,” J. Gen. Physiol. 76, 517–537 (1980). [CrossRef] [PubMed]
  56. S. C. Bloch, SSP: The Spreadsheet Signal Processor (Prentice-Hall, Englewood Cliffs, N.J., 1992).
  57. W. P. Tanner, J. A. Swets, “A decision-making theory of visual detection,” Psychol. Rev. 61, 401–409 (1954). [CrossRef] [PubMed]
  58. S. Siegel, Nonparametric Statistics: For the Behavioural Sciences (McGraw-Hill, New York, 1956).
  59. P. G. Lillywhite, “Multiplicative intrinsic noise and the limits to visual performance,” Vision Res. 21, 291–296 (1981). [CrossRef] [PubMed]
  60. P. G. Lillywhite, S. B. Laughlin, “Transducer noise in a photoreceptor,” Nature (London) 277, 569–572 (1979). [CrossRef]
  61. W. P. Tanner, R. C. Jones, “The ideal sensor system as approached through signal detection theory and the theory of signal detectability,” in Visual Search Problems, A. Morris, E. P. Horne, eds. (National Academy of Sciences–National Research Council, Washington, D.C., 1960), pp. 59–68.
  62. H. B. Barlow, “The physical limits of visual discrimination,” in Photophysiology, A. C. Giese, ed. (Academic, New York, 1964), pp. 163–202.
  63. T. Cohn, D. Lasley, “Visual sensitivity,” Annu. Rev. Psychol. 37, 495–521 (1986). [CrossRef] [PubMed]
  64. A. B. Watson, “Gain, noise, and contrast sensitivity of linear visual neurons,” Visual Neurosci. 4, 147–157 (1990). [CrossRef]
  65. W. G. Owen, “Ionic conductances in rod photoreceptors,” Annu. Rev. Physiol. 49, 743–764 (1987). [CrossRef] [PubMed]
  66. S. B. Laughlin, J. Howard, B. Blakeslee, “Synaptic limitations to contrast coding in the retina of the blowfly Calliphora,” Proc. R. Soc. London Ser. B 231, 437–467 (1987). [CrossRef]
  67. R. R. de Ruyter van Steveninck, S. B. Laughlin, “Light adaptation and reliability in blowfly photoreceptors,” Int. J. Neural Syst. 7, 437–444 (1996). [CrossRef] [PubMed]
  68. S. Hecht, S. Shlaer, M. H. Pirenne, “Energy, quanta, and vision,” J. Gen. Physiol. 25, 819–840 (1942). [CrossRef] [PubMed]
  69. H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).
  70. T. E. Cohn, “Quantum fluctuation limit in foveal vision,” Vision Res. 16, 573–579 (1976). [CrossRef] [PubMed]
  71. D. C. Burr, “Human sensitivity to flicker and motion,” in Limits of Vision, J. J. Kulikowski, V. Walsh, I. J. Murray, eds. (CRC Press, Boca Raton, Fla., 1991), pp. 147–159.
  72. J. Rovamo, A. Raninen, S. Lukkarinen, K. Donner, “Flicker sensitivity as a function of spectral density of external white temporal noise,” Vision Res. 36, 3767–3774 (1996). [CrossRef] [PubMed]
  73. E. P. Hornstein, D. R. Pope, T. E. Cohn, “Effects of early noise on the shape of the temporal contrast sensitivity function,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 1795 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited