OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 742–749

Detection improvement in spatially filtered x-ray fluoroscopy image sequences

Kadri N. Jabri and David L. Wilson  »View Author Affiliations


JOSA A, Vol. 16, Issue 3, pp. 742-749 (1999)
http://dx.doi.org/10.1364/JOSAA.16.000742


View Full Text Article

Enhanced HTML    Acrobat PDF (515 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of spatial noise-reduction filtering on human observer detection of stationary cylinders mimicking arteries, catheters, and guide wires in x-ray fluoroscopy was investigated in both single image frames and image sequences. Ideal edge-preserving spatial filtering was simulated by filtering of the noise before addition of the target cylinder. This allowed us to separate the effect of edge blurring from those of noise reduction and spatial noise correlation. We used three different center-weighted averagers that reduced pixel noise variance by factors of 0.75, 0.50, and 0.25. As compared with no filtering, the effect of filtering on detection in single images was statistically insignificant. This indicated an adverse effect of spatial noise correlation on detection that countered the effect of noise reduction. By comparison, spatial filtering significantly improved detection in image sequences and yielded potential x-ray dose savings of 26–34%. Comparison of results with two observer models suggested that human observers have an improved detection efficiency in spatially filtered image sequences as compared with white-noise sequences. Pixel noise reduction, a measure commonly used to assess filter performance, overestimated the effect of filtering on detection and was not a good indicator of image quality. We conclude that edge-preserving spatial filtering is more effective in sequences than in single images and that such filtering can be used to improve image quality in noisy image sequences such as x-ray fluoroscopy.

© 1999 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(110.3000) Imaging systems : Image quality assessment
(110.4280) Imaging systems : Noise in imaging systems
(330.1880) Vision, color, and visual optics : Detection
(330.5510) Vision, color, and visual optics : Psychophysics

History
Original Manuscript: June 16, 1998
Revised Manuscript: October 26, 1998
Manuscript Accepted: October 27, 1998
Published: March 1, 1999

Citation
Kadri N. Jabri and David L. Wilson, "Detection improvement in spatially filtered x-ray fluoroscopy image sequences," J. Opt. Soc. Am. A 16, 742-749 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-3-742


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. B. Shope, “Radiation-induced skin injuries from fluoroscopy,” Radiology 197(P), 209 (1995).
  2. D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, “Adaptive noise smoothing filter for images with signal-dependent noise,” IEEE Trans. Pattern. Anal. Mach. Intell. PAMI-7, 165–177 (1985). [CrossRef]
  3. C. L. Chan, A. K. Katsaggelos, A. V. Sahakian, “Image sequences filtering in quantum-limited noise with applications to low-dose fluoroscopy,” IEEE Trans. Med. Imaging 12, 610–621 (1993). [CrossRef]
  4. R. Aufrichtig, D. L. Wilson, “X-ray fluoroscopy spatio-temporal filtering with object detection,” IEEE Trans. Med. Imaging 14, 733–746 (1995). [CrossRef] [PubMed]
  5. R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994). [CrossRef] [PubMed]
  6. P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced choice measurements,” Med. Phys. 23, 1833–1843 (1996). [CrossRef] [PubMed]
  7. P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: application to pulsed fluoroscopy perception,” Behav. Res. Methods Instrum. Comput. 30, 332–348 (1998). [CrossRef]
  8. R. Aufrichtig, C. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994). [CrossRef]
  9. P. Xue, D. L. Wilson, “Effects of motion blurring in x-ray fluoroscopy,” Med. Phys. 25, 587–599 (1998). [CrossRef] [PubMed]
  10. P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998). [CrossRef]
  11. D. L. Wilson, P. Xue, R. Aufrichtig, “Perception of fluoroscopy last-image-hold,” Med. Phys. 21, 1875–1883 (1994). [CrossRef] [PubMed]
  12. D. L. Wilson, K. N. Jabri, P. Xue, R. Aufrichtig, “Perceived noise versus display noise in temporally filtered image sequences,” J. Electron. Imaging 5, 490–495 (1996). [CrossRef]
  13. J. Astola, P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering (CRC Press, Boca Raton, Fla., 1997).
  14. G. R. Arce, “Multistage order statistic filters for image sequence processing,” IEEE Trans. Signal Process. 39, 1146–1163 (1991). [CrossRef]
  15. L. Alvarez, P.-L. Lions, J.-M. Morel, “Image selective smoothing and edge detection by nonlinear diffusion. II,” SIAM J. Numer. Anal. 29, 845–866 (1992). [CrossRef]
  16. N. H. C. Yung, A. H. S. Lai, “Performance evaluation of a feature-preserving filtering algorithm for removing additive random noise in digital images,” Opt. Eng. 35, 1871–1885 (1996). [CrossRef]
  17. G. Z. Yang, P. Burger, D. N. Firmin, S. R. Underwood, “Structure adaptive anisotropic image filtering,” Image Vision Comput. 14, 135–145 (1996). [CrossRef]
  18. R. D. Fiete, H. H. Barrett, W. E. Smith, K. J. Myers, “Hotelling trace criterion and its correlation with human-observer performance,” J. Opt. Soc. Am. A 4, 945–953 (1987). [CrossRef] [PubMed]
  19. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, G. W. Seeley, “Effect of noise correlation on detectability of disk signals in medical imaging,” J. Opt. Soc. Am. A 2, 1752–1759 (1985). [CrossRef] [PubMed]
  20. K. T. Blackwell, “The effect of white and filtered noise on contrast detection thresholds,” Vision Res. 38, 267–280 (1998). [CrossRef] [PubMed]
  21. J. P. Rolland, H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt. Soc. Am. A 9, 649–658 (1992). [CrossRef] [PubMed]
  22. A. E. Burgess, X. Li, C. K. Abbey, “Visual signal detectability with two noise components: anomalous masking effects,” J. Opt. Soc. Am. A 14, 2420–2442 (1997). [CrossRef]
  23. M. P. Eckstein, A. J. Ahumada, A. B. Watson, “Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,” J. Opt. Soc. Am. A 14, 2406–2419 (1997). [CrossRef]
  24. J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996). [CrossRef]
  25. H. Pollehn, H. Roehrig, “Effect of noise on the modulation transfer function of the visual channel,” J. Opt. Soc. Am. 60, 842–848 (1970). [CrossRef] [PubMed]
  26. C. F. Stromeyer, B. Julesz, “Spatial-frequency masking in vision: critical bands and spread of masking,” J. Opt. Soc. Am. 62, 1221–1232 (1972). [CrossRef] [PubMed]
  27. J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, R. L. Lagendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc. IEEE 83, 1272–1292 (1995). [CrossRef]
  28. R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic, San Diego, Calif., 1995).
  29. P. Z. Peebles, Communication System Principles (Addison-Wesley, Reading, Mass., 1976).
  30. A. E. Burgess, “Statistically defined backgrounds: performance of a modified nonprewhitening observer model,” J. Opt. Soc. Am. A 11, 1237–1242 (1994). [CrossRef]
  31. M. Ishida, K. Doi, L.-N. Loo, C. E. Metz, J. L. Lehr, “Digital image processing: effect on detectability of simulated low-contrast radiographic patterns,” Radiology 150, 569–575 (1984). [PubMed]
  32. D. H. Kelly, “Motion and vision. II. Stabilized spatio-temporal threshold surface,” J. Opt. Soc. Am. 69, 1340–1349 (1979). [CrossRef] [PubMed]
  33. D. L. Wilson, R. M. Manjeshwar, “Role of phase information and eye pursuit in the detection of moving objects in noise,” J. Opt. Soc. Am. A 16, 669–678 (1999). [CrossRef]
  34. A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  35. R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, Mass., 1992).
  36. W. K. Pratt, Digital Image Processing, 2nd ed. (Wiley, New York, 1991).
  37. E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principles of Neural Science (Appleton & Lange, Norwalk, Conn., 1991).
  38. R. Sekular, R. Blake, Perception (McGraw-Hill, New York, 1990).
  39. C. van den Branden Lambrecht, M. Kunt, “Characterization of human visual sensitivity for video imaging applications,” Signal Process. 67, 255–269 (1998). [CrossRef]
  40. T. Matsui, “Theoretical analysis of perceptual responses to flashed sinusoidal waves using a multichannel spatiotemporal human vision model,” Electron. Commun. Jpn. Pt. 3 81, 51–62 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited