OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 1115–1123

Perturbation theory as a unified approach to describe diffractive optical elements

Markus Testorf  »View Author Affiliations


JOSA A, Vol. 16, Issue 5, pp. 1115-1123 (1999)
http://dx.doi.org/10.1364/JOSAA.16.001115


View Full Text Article

Acrobat PDF (318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

First-order perturbation theory is used to describe diffractive optical elements. This method provides an extension of Kirchhoff’s thin element approximation. In particular, the perturbation approximation considers propagation effects due to a finite depth of diffractive structures. The perturbation method is explicitly applied to various problems in diffractive optics, mostly related to the analysis of surface-relief structures. As part of this investigation this approach is compared with alternative extensions of the thin element model. This comparison illustrates that perturbation theory allows a consistent unified treatment of many diffraction phenomena, preserving the simplicity of Fourier optics.

© 1999 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.1970) Diffraction and gratings : Diffractive optics
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(260.1960) Physical optics : Diffraction theory

Citation
Markus Testorf, "Perturbation theory as a unified approach to describe diffractive optical elements," J. Opt. Soc. Am. A 16, 1115-1123 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-5-1115

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited