## Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements

JOSA A, Vol. 16, Issue 5, pp. 1131-1142 (1999)

http://dx.doi.org/10.1364/JOSAA.16.001131

Enhanced HTML Acrobat PDF (938 KB)

### Abstract

We formulate and apply an efficient finite-difference time-domain algorithm to the analysis of axially symmetric diffractive optical elements. We discuss aspects relating to minimizing numerical dispersion in the incident field, application of absorbing boundary conditions in the radial direction, convergence to a steady state, and propagation of the steady-state electromagnetic fields from the finite-difference time-domain region to the plane of interest. Incorporation of these aspects into a single finite-difference time-domain algorithm results in an extremely efficient and robust method for diffractive optical element analysis. Application to the analysis of subwavelength and multilevel lenses, both with and without loss, for focusing planar and Gaussian beams is presented.

© 1999 Optical Society of America

**OCIS Codes**

(050.1970) Diffraction and gratings : Diffractive optics

(090.1970) Holography : Diffractive optics

**History**

Original Manuscript: August 13, 1998

Revised Manuscript: November 30, 1998

Manuscript Accepted: December 10, 1998

Published: May 1, 1999

**Citation**

Dennis W. Prather and Shouyuan Shi, "Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements," J. Opt. Soc. Am. A **16**, 1131-1142 (1999)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-5-1131

Sort: Year | Journal | Reset

### References

- T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985). [CrossRef]
- G. Granet, B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996). [CrossRef]
- P. Lalanne, G. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
- P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598 (1997). [CrossRef]
- B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994). [CrossRef]
- D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector modeling diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39 (1995). [CrossRef]
- M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1322 (1996). [CrossRef]
- K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996). [CrossRef]
- D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
- P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR 62, 415–430 (1996).
- A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995). [CrossRef]
- D. W. Prather, S. Shi, M. S. Mirotznik, J. N. Mait, “Vector-based analysis of axially symmetric and conductive diffractive lenses,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest (Optical Society of America, Washington, D.C., 1998), pp. 94–96.
- D. Davidson, R. Ziolkowski, “Body-of-revolution finite-difference time-domain modeling of space–time focusing by a three-dimensional lens,” J. Opt. Soc. Am. A 11, 1471–1490 (1994). [CrossRef]
- M. Andreasen, “Scattering from bodies of revolution,” IEEE Trans. Antennas Propag. AP-13, 303–310 (1965). [CrossRef]
- J. Mautz, R. Harrington, “Radiation and scattering from bodies of revolution,” Appl. Sci. Res. 20, 405–435 (1969). [CrossRef]
- T. Wu, L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977). [CrossRef]
- J. Mautz, R. Harrington, “Electromagnetic scattering from a homogeneous material body of revolution,” Arch. Elektr. Uebertrag. 33, 71–80 (1979).
- M. Morgan, K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. AP-27, 202–214 (1979). [CrossRef]
- A. Kishk, L. Shafai, “On the accuracy limits of different integral-equation formulations for numerical solution of dielectric bodies of revolution,” Can. J. Phys. 63, 1532–1539 (1985). [CrossRef]
- L. Medgyesi-Mitschang, J. Putnam, “Electromagnetic scattering from axially inhomogeneous bodies of revolution,” IEEE Trans. Antennas Propag. AP-32, 797–806 (1984). [CrossRef]
- A. Kishk, L. Shafai, “Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions,” IEEE Trans. Antennas Propag. AP-34, 666–673 (1986). [CrossRef]
- S. Gedney, R. Mittra, “The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution,” IEEE Trans. Antennas Propag. 38, 313–322 (1990). [CrossRef]
- K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
- C. L. Britt, “Solution of electromagnetic scattering problems using time domain techniques,” IEEE Trans. Antennas Propag. 37, 1181–1192 (1989). [CrossRef]
- A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).
- Y. Chen, R. Mittra, P. Harms, “Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries,” IEEE Trans. Microwave Theory Tech. 44, 832–839 (1996). [CrossRef]
- D. Ge, S. Shi, Z. Zhu, “A new FDTD scheme for introducing incident fields,” Microwave J. 11, 187–190 (1995).
- F. Teixeira, W. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7, 371–373 (1997). [CrossRef]
- J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
- J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
- G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981). [CrossRef]
- K. Umashankar, A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. EMC-24, 397–405 (1982). [CrossRef]
- A. Taflove, K. R. Umashankar, “The finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic scattering,” IEEE Trans. Magn. 25, 3086–3091 (1989). [CrossRef]
- D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Lett. 4, 268–270 (1994). [CrossRef]
- W. C. Chew, W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994). [CrossRef]
- E. A. Navarro, C. Wu, P. Y. Chung, J. Litva, “Application of PML superabsorbing boundary condition to non-orthogonal FDTD method,” Electron. Lett. 30, 1654–1656 (1994). [CrossRef]
- Z. S. Sacks, D. M. Kingsland, R. Lee, J. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995). [CrossRef]
- W. V. Andrew, C. A. Balanis, P. A. Tirkas, “A comparison of the Berenger perfectly matched layer and the Lindman high-order ABC’s for the FDTD method,” IEEE Microwave Guided Wave Lett. 5, 192–194 (1995). [CrossRef]
- B. Stupfel, R. Mittra, “A theoretical study of numerical absorbing boundary conditions,” IEEE Trans. Antennas Propag. 43, 478–486 (1995). [CrossRef]
- C. M. Rappaport, “Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space,” IEEE Trans. Magn. 32, 968–974 (1996). [CrossRef]
- S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]
- J. A. Roden, S. D. Gedney, “Efficient implementation of the uniaxial-based PML media in three-dimensional nonorthogonal coordinates with the use of the FDTD technique,” Microwave Opt. Technol. Lett. 14, 71–75 (1997). [CrossRef]
- F. L. Teixeira, W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microwave Guided Wave Lett. 7, 285–287 (1997). [CrossRef]
- A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975). [CrossRef]
- A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. EMC-22, 191–202 (1980). [CrossRef]
- H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
- A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, Englewood Cliffs, N.J., 1991).
- G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multi-level diffractive optical elements,” (MIT, Cambridge, Mass., 1991).
- D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998). [CrossRef]
- J. N. Mait, D. W. Prather, M. S. Mirotznik, “Binary subwavelength diffractive-lens design,” Opt. Lett. 23, 1343–1345 (1998). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.