OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 1157–1167

Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory

Joseph N. Mait, Dennis W. Prather, and Mark S. Mirotznik  »View Author Affiliations


JOSA A, Vol. 16, Issue 5, pp. 1157-1167 (1999)
http://dx.doi.org/10.1364/JOSAA.16.001157


View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A procedure for designing binary diffractive lenses by use of pulse-width-modulated subwavelength features is discussed. The procedure is based on the combination of two approximate theories, effective-medium theory and scalar diffraction theory, and accounts for limitations on feature size and etch depth imposed by fabrication. We use a closed-form expression based on zeroth-order effective-medium theory to map the desired superwavelength phase to the width of a binary subwavelength feature and to examine the requirements imposed by this technique on fabrication and on analysis. Comparisons are also made to more rigorous approaches. In making these comparisons, we show that a trade-off exists between the exactness of the mapping and the fabrication constraints on the minimum feature.

© 1999 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1960) Diffraction and gratings : Diffraction theory
(050.1970) Diffraction and gratings : Diffractive optics
(220.3620) Optical design and fabrication : Lens system design
(220.3630) Optical design and fabrication : Lenses
(260.2110) Physical optics : Electromagnetic optics

History
Original Manuscript: August 10, 1998
Revised Manuscript: November 19, 1998
Manuscript Accepted: November 23, 1998
Published: May 1, 1999

Citation
Joseph N. Mait, Dennis W. Prather, and Mark S. Mirotznik, "Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory," J. Opt. Soc. Am. A 16, 1157-1167 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-5-1157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985). [CrossRef]
  2. M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996). [CrossRef]
  3. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  4. M. S. Mirotznik, J. N. Mait, D. W. Prather, W. A. Beck, “Three-dimensional vector-based analysis of subwavelength diffractive optical elements using the finite-difference-time-domain (FDTD) method,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1998), pp. 91–93.
  5. F. Nikolajeff, J. Bengtsson, M. Larsson, M. Ekberg, S. Hård, “Measuring and modeling the proximity effect in direct-write electron-beam lithography kinoforms,” Appl. Opt. 34, 897–903 (1995). [CrossRef] [PubMed]
  6. W. Stork, N. Streibl, H. Haidner, P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16, 1921–1923 (1991). [CrossRef] [PubMed]
  7. D. H. Raguin, G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993). [CrossRef] [PubMed]
  8. M. W. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31, 4453–4458 (1992). [CrossRef] [PubMed]
  9. H. Haidner, J. T. Sheridan, N. Streibl, “Dielectric binary blazed gratings,” Appl. Opt. 32, 4276–4278 (1993). [CrossRef] [PubMed]
  10. Z. Zhou, T. J. Drabik, “Optimized binary, phase-only, diffractive optical element with subwavelength features for 1.55 µm,” J. Opt. Soc. Am. A 12, 1104–1112 (1995). [CrossRef]
  11. E. Noponen, J. Turunen, F. Wyrowski, “Synthesis of paraxial-domain diffractive elements by rigorous electromagnetic theory,” J. Opt. Soc. Am. A 12, 1128–1133 (1995). [CrossRef]
  12. F. T. Chen, H. G. Craighead, “Diffractive phase elements on two-dimensional artificial dielectrics,” Opt. Lett. 20, 121–123 (1995). [CrossRef] [PubMed]
  13. M. E. Warren, R. E. Smith, G. A. Vawter, J. R. Wendt, “High-efficiency subwavelength diffractive optical element in GaAs for 975 nm,” Opt. Lett. 20, 1441–1443 (1995). [CrossRef] [PubMed]
  14. J. M. Miller, N. de Beaucoudrey, P. Chavel, E. Cambril, H. Launois, “Synthesis of a subwavelength-pulse-width spatially modulated array illuminator for 0.633 µm,” Opt. Lett. 21, 1399–1401 (1996). [CrossRef] [PubMed]
  15. S. Astilean, Ph. Lalanne, P. Chavel, E. Cambril, H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett. 23, 552–554 (1998). [CrossRef]
  16. Ph. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, “Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings,” Opt. Lett. 23, 1081–1083 (1998). [CrossRef]
  17. P. Kipfer, M. Collischon, H. Haidner, J. Schwider, “Subwavelength structures and their use in diffractive optics,” Opt. Eng. 35, 726–731 (1996). [CrossRef]
  18. F. T. Chen, H. G. Craighead, “Diffractive lens fabricated with mostly zeroth-order gratings,” Opt. Lett. 21, 177–179 (1996). [CrossRef] [PubMed]
  19. M. Schmitz, O. Bryngdahl, “Rigorous concept for the design of diffractive microlenses with high numerical apertures,” J. Opt. Soc. Am. A 14, 901–906 (1997). [CrossRef]
  20. D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite, aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998). [CrossRef]
  21. J. N. Mait, D. W. Prather, M. S. Mirotznik, “Binary subwavelength diffractive lens design,” Opt. Lett. 23, 1343–1345 (1998). [CrossRef]
  22. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 14, pp. 705–708.
  23. P. Lalanne, D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic elements,” J. Mod. Opt. 43, 2063–2085 (1996). [CrossRef]
  24. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  25. M. Schmitz, R. Bräuer, O. Bryngdahl, “Phase gratings with subwavelength structures,” J. Opt. Soc. Am. A 12, 2458–2462 (1995). [CrossRef]
  26. R. E. Smith, M. E. Warren, J. R. Wendt, G. A. Vawter, “Polarization-sensitive subwavelength antireflection surfaces on a semiconductor for 975 nm,” Opt. Lett. 21, 1201–1203 (1996). [CrossRef] [PubMed]
  27. S. Dunn, M. G. Moharam, “Synthesis of high efficiency blazed gratings in two-dimensional binary gratings,” presented at the 1996 Annual Meeting of the Optical Society of America, October 20–25, 1996, Rochester, New York.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited