OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 953–978

Neural model of first-order and second-order motion perception and magnocellular dynamics

Aijaz A. Baloch, Stephen Grossberg, Ennio Mingolla, and C. A. M. Nogueira  »View Author Affiliations

JOSA A, Vol. 16, Issue 5, pp. 953-978 (1999)

View Full Text Article

Acrobat PDF (1993 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A neural model of motion perception simulates psychophysical data concerning first-order and second-order motion stimuli, including the reversal of perceived motion direction with distance from the stimulus (Γ display), and data about directional judgments as a function of relative spatial phase or spatial and temporal frequency. Many other second-order motion percepts that have been ascribed to a second non-Fourier processing stream can also be explained in the model by interactions between ON and OFF cells within a single, neurobiologically interpreted magnocellular processing stream. Yet other percepts may be traced to interactions between form and motion processing streams, rather than to processing within multiple motion processing streams. The model hereby explains why monkeys with lesions of the parvocellular layers, but not of the magnocellular layers, of the lateral geniculate nucleus (LGN) are capable of detecting the correct direction of second-order motion, why most cells in area MT are sensitive to both first-order and second-order motion, and why after 2-amino-4-phosphonobutyrate injection selectively blocks retinal ON bipolar cells, cortical cells are sensitive only to the motion of a moving bright bar’s trailing edge. Magnocellular LGN cells show relatively transient responses, whereas parvocellular LGN cells show relatively sustained responses. Correspondingly, the model bases its directional estimates on the outputs of model ON and OFF transient cells that are organized in opponent circuits wherein antagonistic rebounds occur in response to stimulus offset. Center–surround interactions convert these ON and OFF outputs into responses of lightening and darkening cells that are sensitive both to direct inputs and to rebound responses in their receptive field centers and surrounds. The total pattern of activity increments and decrements is used by subsequent processing stages (spatially short-range filters, competitive interactions, spatially long-range filters, and directional grouping cells) to determine the perceived direction of motion.

© 1999 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.2980) Image processing : Image enhancement
(100.3010) Image processing : Image reconstruction techniques
(150.0150) Machine vision : Machine vision
(150.4620) Machine vision : Optical flow
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.4150) Vision, color, and visual optics : Motion detection
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6110) Vision, color, and visual optics : Spatial filtering
(330.6790) Vision, color, and visual optics : Temporal discrimination
(330.7320) Vision, color, and visual optics : Vision adaptation

Aijaz A. Baloch, Stephen Grossberg, Ennio Mingolla, and C. A. M. Nogueira, "Neural model of first-order and second-order motion perception and magnocellular dynamics," J. Opt. Soc. Am. A 16, 953-978 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
  2. J. S. Lappin and H. H. Bell, “The detection of coherence in moving random-dot patterns,” Vision Res. 16, 161–168 (1976).
  3. C. L. Baker and O. J. Braddick, “The basis of area and dot number effects in random dot motion perception,” Vision Res. 22, 1253–1259 (1982).
  4. J. J. Chang and B. Julesz, “Displacement limits, directional anisotropy and direction versus form discrimination in random-dot kinematograms,” Vision Res. 23, 639–646 (1983).
  5. J. J. Chang and B. Julesz, “Displacement limits for spatial frequency filtered random-dot kinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
  6. A. J. van Doorn and J. J. Koenderink, “Spatiotemporal integration in the detection of coherent motion,” Vision Res. 24, 47–53 (1984).
  7. K. Nakayama and G. H. Silverman, “Temporal and spatial characteristics of the upper displacement limit for motion in random dots,” Vision Res. 24, 293–299 (1984).
  8. W. F. Bischof and V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
  9. P. Cavanagh and G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
  10. S. Grossberg and M. E. Rudd, “A neural architecture for visual motion perception: group and element apparent motion,” Neural Networks 2, 421–450 (1989).
  11. G. Sperling, “Three stages and two systems of visual processing,” Spatial Vis. 4, 183–207 (1989).
  12. C. Chubb and G. Sperling, “Two motion perception mechanisms revealed through distance-driven reversal of apparent motion,” Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).
  13. S. M. Anstis and B. J. Rogers, “Illusory reversal of visual depth and movement during changes in contrast,” Vision Res. 15, 957–961 (1975).
  14. Z.-L. Lu and G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2772 (1995).
  15. A. Baloch and S. Grossberg, “A neural model of high-level motion processing: line motion and formotion dynamics,” Vision Res. 37, 3037–3059 (1997).
  16. G. Francis and S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion and illusory contours,” Vision Res. 36, 149–173 (1996).
  17. S. Grossberg, “Why do parallel cortical systems exist for the perception static form and moving form?” Percept. Psychophys. 49, 117–141 (1991).
  18. A. Gellatly and A. Blurton, “What are the mechanisms of rivalrous first-order and second-order motions?” Perception 25, Supplement, 8–9 (1996).
  19. C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat.” J. Physiol. (London) 187, 517–552 (1966).
  20. D. J. Tolhurst, “Separate channels for the analysis of shape and the movement of a moving visual stimulus,” J. Physiol. (London) 231, 385–402 (1973).
  21. B. G. Clelland, M. W. Dubin, and W. R. Levick, “Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus,” J. Physiol. (London) 217, 473–496 (1971).
  22. P. H. Schiller and J. Malpeli, “Properties of tectal projections of monkey retinal ganglion cells,” J. Neurophysiol. 40, 428–445 (1977).
  23. M. Livingstone and D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
  24. T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiol. 52, 1106–1131 (1984).
  25. J. H. R. Maunsell and D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation,” J. Neurophysiol. 49, 1127–1147 (1983).
  26. W. T. Newsome and E. B. Paré, “A selective impairment of motion processing following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
  27. W. T. Newsome, R. H. Wurtz, M. R. Dursteler, and A. Mikami, “Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey,” J. Neurosci. 5, 825–840 (1985).
  28. G. A. Orban and B. Gulyas, “Image segregation by motion: cortical mechanisms and implementation in neural networks,” in R. Eckmiller and C. Von der Marlsburg, eds., Neurocomputers (Springer-Verlag, Heidelberg), pp. 149–159.
  29. D. C. van Essen, “Visual areas of the mammalian cerebral cortex,” Annu. Rev. Neurosci. 2, 227–263 (1979).
  30. D. C. van Essen, J. H. R. Maunsell, and J. L. Bixby, “The middle temporal visual area in the macaque: myeloarchitecture connections, functional properties and topographic organization,” J. Comp. Neurol. 199, 293–326 (1981).
  31. S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).
  32. J. H. R. Maunsell, T. A. Nealey, and D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
  33. T. D. Albright, “Form–cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
  34. P. H. Schiller, N. K. Logothetis, and E. R. Charles, “Functions of the color-opponent and broad-band channels of the visual system,” Science 343, 68–70 (1990).
  35. V. P. Ferrera, T. A. Nealey, and J. H. R. Maunsell, “Mixed parvocellular and magnocellular geniculate signals in visual area V4,” Nature (London) 358, 756–758 (1992).
  36. J. H. R. Maunsell, T. A. Nealey, and V. P. Ferrera, “Magnocellular and parvocellular contributions to neuronal responses in monkey visual cortex,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 901 (1992).
  37. M. M. Slaughter and R. F. Miller, “2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research,” Science 211, 182–184 (1981).
  38. P. H. Schiller, “The On and Off channels of the visual system,” Trends Neurosci. 15, 86–92 (1992).
  39. C. L. Fennema and W. B. Thompson, “Velocity determination in scenes containing several moving objects,” Comput. Graph. Image Process. 9, 301–315 (1979).
  40. B. Hadani, G. Ishai, and M. Gur, “Visual stability and space perception in monocular vision: mathematical model,” J. Opt. Soc. Am. 70, 60–65 (1980).
  41. B. K. P. Horn and B. G. Schunck, “Determining optical flow,” MIT A.I. Memo 572 (MIT, Cambridge, Mass., 1980).
  42. J. O. Limb and J. A. Murphy, “Estimating the velocity of moving objects in television signals,” Comput. Vision Image Process. 4, 311–327 (1975).
  43. D. Marr, Vision (Freeman, San Francisco, Calif., 1982).
  44. D. Marr and S. Ullman, “Directional sensitivity and its use in early visual processing,” Proc. R. Soc. London, Ser. B 211, 151–180 (1981).
  45. E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
  46. W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in W. A. Rosenblith, ed., Sensory Communication (Wiley, New York, 1961), pp. 303–317.
  47. J. P. H. van Santen and G. Sperling, “Temporal covariance model of human motion perception,” J. Opt. Soc. Am. A 1, 451–473 (1984).
  48. J. P. H. van Santen and G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
  49. A. B. Watson and A. J. Ahumada, Jr., “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
  50. S. Grossberg and E. Mingolla, “Neural dynamics of motion perception: direction fields, apertures, and resonant grouping,” Percept. Psychophys. 53, 243–278 (1993).
  51. S. Grossberg and M. E. Rudd, “Cortical dynamics of visual motion perception: short- and long-range motion,” Psychol. Rev. 99, 78–121 (1992).
  52. S. H. Bartley, Vision, a Study of Its Basis (Van Nostrand Reinhold, New York, 1941).
  53. H. R. de Silva, “An experimental investigation of the determinants of apparent visual movement,” Am. J. Psychol. 37, 469–501 (1926).
  54. D. Giaschi and S. Anstis, “The less you see it, the faster it moves: shortening the ‘on-time’ speeds up the apparent motion,” Vision Res. 29, 335–347 (1989).
  55. P. A. Kolers, Aspects of Motion Perception (Pergamon, Elmsford, N.Y., 1972).
  56. A. Korté, “Kinematoskopische Untersuchungen,” Z. Psychol. 194–296 (1915).
  57. A. Pantle and L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
  58. J. Ternus, “Experimentelle Untersuchungen über phänomenale Identität,” in W. D. Ellis, ed. and trans., A Sourcebook of Gestalt Psychology (Humanities Press, New York, 1950) (original work published 1926).
  59. G. Francis and S. Grossberg, “Cortical dynamics of boundary segmentation and reset: persistence, afterimages, and residual traces,” Perception 25, 543–567 (1996).
  60. P. Cavanagh, M. Arguin, and M. von Grünau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
  61. G. Mather, “Temporal properties of apparent motion in subjective figures,” Perception 17, 729–736 (1988).
  62. W. Neuhaus, “Experimentelle untersuchung der Scheinbewegung,” Archiv gesamte Psychol. 75, 315–458 (1930).
  63. V. Ramachandran, “Apparent motion of subjective surfaces,” Perception 14, 127–134 (1985)
  64. M. von Grünau, “The involvement of illusory contours in stroboscopic motion,” Percept. Psychophys. 25, 205–208 (1979).
  65. C. A. M. Nogueira, E. Mingolla, and S. Grossberg, “Computation of first order and second order motion by a model of magnocellular dynamics,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1029 (1993).
  66. J. Chey, S. Grossberg, and E. Mingolla, “Neural dynamics of motion processing and speed discrimination,” Vision Res. 38, 2769–2786 (1998).
  67. J. Chey, S. Grossberg, and E. Mingolla, “Neural dynamics of motion grouping: from aperture ambiguity to object speed and direction,” J. Opt. Soc. Am. A 14, 2570–2594 (1997).
  68. D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172–1180 (1988).
  69. A. Gove, S. Grossberg, and E. Mingolla, “Brightness perception, illusory contours, and corticogeniculate feedback,” Visual Neurosci. 12, 1027–1052 (1995).
  70. Z. Liu, J. P. Gaska, L. D. Jacobson, and D. A. Pollen, “Interneuronal interactions between members of quadrature phase and anti-phase pairs in the cat’s visual cortex,” Vision Res. 32, 1193–1198 (1992).
  71. S. Grossberg, “A neural theory of punishment and avoidance, II: quantitative theory,” Math. Biosci. 15, 253–285 (1972).
  72. G. A. Carpenter and S. Grossberg, “Adaptation and transmitter gating in vertebrate photo-receptors,” J. Theor. Neurobiol. 1, 1–42 (1981). Reprinted in S. Grossberg, ed., The Adaptive Brain, Vol. I. (Elsevier/North-Holland, Amsterdam, 1981).
  73. G. Francis, S. Grossberg, and E. Mingolla, “Cortical dynamics of feature binding and reset: control of visual persistence,” Vision Res. 34, 1089–1104 (1994).
  74. P. Gaudiano, “Simulations of X and Y retinal ganglion cell behavior with a nonlinear push–pull model of spatiotemporal retinal processing,” Vision Res. 34, 1767–1784 (1994).
  75. S. Grossberg, “Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions,” Biol. Cybern. 23, 187–202 (1976).
  76. H. Ögmen and S. Gagné, “Neural network architecture for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–506 (1990).
  77. C. Chubb and G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
  78. L. R. Harris and A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
  79. G. S. Masson, C. Busettini, and F. A. Miles, “Vergence eye movements in response to binocular disparity without depth perception,” Nature (London) 389, 283–286 (1997).
  80. R. C. Emerson and G. L. Gerstein, “Simple striate neurons in the cat: II. Mechanisms underlying directional asymmetry and directional selectivity,” J. Neurophysiol. 40, 136–155 (1977).
  81. L. Ganz, “Visual cortical mechanisms responsible for direction selectivity,” Vision Res. 24, 3–11 (1984).
  82. A. W. Goodwin, G. H. Henry, and P. O. Bishop, “Direction selectivity of simple striate cells: properties and mechanisms,” J. Neurophysiol. 38, 1500–1523 (1975).
  83. P. Heggelund, “Direction assymetry by moving stimuli and static receptive field plots for simple cells in cat striate cortex,” Vision Res. 24, 13–16 (1984).
  84. H. B. Barlow and W. R. Levick, “The mechanism of directionally selective units in rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).
  85. M. Ariel and N. W. Daw, “Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells,” J. Physiol. (London) 324, 161–185 (1982).
  86. D. H. Hubel and T. N. Wiesel, “Receptive fields of single cells in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1959).
  87. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  88. S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol. 16, 37–68 (1953).
  89. P. H. Schiller, “Central connections in the retinal ON- and OFF-pathways,” Nature (London) 297, 580–583 (1982).
  90. S. Grossberg, “How does a brain build cognitive code?” Psychol. Rev. 87, 1–51 (1980).
  91. S. Grossberg, “The quantized geometry of visual space: the coherent computation of depth, form and lightness,” Behav. Brain Sci. 6, 625–657 (1983).
  92. T. D. Albright, R. Desimone, and C. G. Gross, “Columnar organization of directionally sensitive cells in visual area MT of the macaque,” J. Neurophysiol. 51, 16–31 (1984).
  93. W. T. Newsome, M. S. Gizzi, and J. A. Movshan, “Spatial and temporal properties of neurons in macaque MT,” Invest. Ophthalmol. Visual Sci. Suppl. 24, 106 (1983).
  94. D. C. Bradley, N. Qian, and R. A. Anderson, “Integration of motion and stereopsis in middle temporal cortical area of macaques,” Nature (London) 373, 609–611 (1995).
  95. J. H. R. Maunsell and D. C. van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148–1167 (1983).
  96. J. A. Gengerelli, “Apparent movement in relation to homonymous and heteronymous stimulation of the cerebral hemispheres,” J. Exp. Psychol. 38, 592–599 (1948).
  97. I. M. Spigel, “Problems in the study of visually perceived movement: an introduction,” in R. H. Haber, ed., Contemporary Theory and Research in Visual Perception (Holt, Rinehart & Winston, New York, 1968), 103–121.
  98. T. Ledgeway and A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
  99. G. Mather and S. West, “Evidence of second-order motion detectors,” Vision Res. 33, 1109–1112 (1993).
  100. A. Derrington, “Analysis of the motion of contrast-modulated patterns,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 1406 (1994).
  101. A. M. Derrington and D. R. Badcock, “Separate detectors for simple and complex cells,” Vision Res. 25, 1869–1878 (1985).
  102. A. M. Derrington, D. R. Badcock, and G. B. Henning, “Discriminating the detection of second-order motion at short stimulus durations,” Vision Res. 37, 1785–1794 (1993).
  103. I. E. Holliday and S. J. Anderson, “Different processes underlie the detection of second-order motion at low and high temporal frequencies,” Proc. R. Soc. London, Ser. B 257, 165–173 (1994).
  104. A. T. Smith and T. Ledgeway, “Sensitivity of second-order motion as a function of drift temporal frequency and viewing eccentricity,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 401 (1997).
  105. A. T. Smith and T. Ledgeway, “Separate detection of moving luminance and contrast modulations: fact or artifact?” Vision Res. 37, 45–62 (1997).
  106. A. B. Watson, P. G. Thompson, B. J. Murphy, and J. Nachmias, “Summation and discrimination of gratings moving in opposite direction,” Vision Res. 20, 341–347 (1980).
  107. T. Ledgeway and A. T. Smith, “Effects of adaptation to second-order motion on perceived speed,” Invest. Ophthalmol. Visual Sci. 36, 53 (1995).
  108. K. Turano, “Evidence for a common motion mechanism of luminance- and contrast-modulated patterns: selective adaptation,” Perception 20, 455–466 (1991).
  109. K. Turano and A. Pantle, “On the mechanism that encodes the movement of contrast variations: velocity discrimination,” Vision Res. 29, 207–221 (1989).
  110. E. Taub, J. D. Victor, and M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
  111. A. Johnston and C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 8, 1109–1123 (1995).
  112. Z.-L. Lu and G. Sperling, “Attention-generated apparent motion,” Science 377, 237–239 (1995).
  113. L. Bowns, “Evidence for a feature tracking explanation of why type II plaids move in the vector sum direction at short durations,” Vision Res. 36, 3685–3694 (1996).
  114. E. Castet, J. Lorenceau, M. Shiffrar, and C. Bonnet, “Perceived speed of moving lines depends on orientation, length, speed, and luminance,” Vision Res. 33, 1921–1936 (1993).
  115. H. Wallach, On Perception (Quadrangle, New York, 1976).
  116. O. Hikosaka, S. Miyauchi, and S. Shimojo, “Focal visual attention produces illusory temporal order and motion sensation,” Vision Res. 33, 1219–1240 (1993).
  117. O. Hikosaka, S. Miyauchi, and S. Shimojo, “Voluntary and stimulus-induced attention detected as motion sensation,” Perception 22, 517–526 (1993).
  118. J. Faubert and M. von Grünau, “The extent of split attention and attribute priming in motion induction,” Prog. Aerosp. Sci. 21, 105b (1992).
  119. J. Faubert and M. von Grünau, “The influence of two spatially distinct primers and attribute priming on motion induction,” Vision Res. 35, 3119–3130 (1995).
  120. M. von Grünau and J. Faubert, “Intraattribute and interattribute motion induction,” Perception 23, 913–928 (1994).
  121. P. Tse, P. Cavanagh, and K. Nakayama, “The role of parsing in high-level motion processing,” in T. Watanabe, ed., High Level Motion Processing (MIT Press, Cambridge, Mass., 1998), pp. 249–266.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited