OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 987–994

Comparison of motion and stereopsis: linear and nonlinear performance

R. F. Hess, C. L. Baker, Jr., and L. M. Wilcox  »View Author Affiliations

JOSA A, Vol. 16, Issue 5, pp. 987-994 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To address the issue of whether the luminance-dependent (linear) and contrast-dependent (nonlinear) processes in stereo and motion have a common computational basis, we compare both carrier-dependent and envelope-dependent performance for these two modalities by using the same stimulus and task: two-flash apparent motion/depth for a wide range of displacements. We do this for different densities, bandwidths, contrasts, spatial frequencies, and exposure durations. The results suggest that there is concordance not only between the luminance-dependent (linear) processes of motion and stereo but also between the envelope-dependent (nonlinear) processes of both modalities. Only one exception was found, but we show this to be amenable to an explanation based on a different contrast dependence for the nonlinear mechanisms of stereo and motion. This suggests that the computational basis of linear and nonlinear processes may be similar for stereopsis and motion.

© 1999 Optical Society of America

OCIS Codes
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis
(330.4150) Vision, color, and visual optics : Motion detection
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6790) Vision, color, and visual optics : Temporal discrimination

Original Manuscript: July 24, 1998
Revised Manuscript: December 4, 1998
Manuscript Accepted: December 9, 1998
Published: May 1, 1999

R. F. Hess, C. L. Baker, and L. M. Wilcox, "Comparison of motion and stereopsis: linear and nonlinear performance," J. Opt. Soc. Am. A 16, 987-994 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988). [CrossRef] [PubMed]
  2. J. C. Boulton, C. L. Baker, “Psychophysical evidence for both a ‘quasi-linear’ and a ‘nonlinear’ mechanism for the detection of motion,” in Computational Vision Based on Neurobiology, T. B. Lawton, ed., Proc. SPIE2054, 124–133 (1993). [CrossRef]
  3. R. F. Hess, L. M. Wilcox, “Linear and non-linear filtering in stereopsis,” Vision Res. 34, 2431–2438 (1994). [CrossRef] [PubMed]
  4. L. Lin, H. R. Wilson, “Stereoscopic integration of Fourier and non-Fourier patterns,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S364 (1995).
  5. I. Kovács, A. Fehér, “Non-Fourier information in bandpass noise patterns,” Vision Res. 37, 1167–1177 (1997). [CrossRef] [PubMed]
  6. J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993). [CrossRef] [PubMed]
  7. J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993). [CrossRef] [PubMed]
  8. Y. X. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993). [CrossRef] [PubMed]
  9. Y. X. Zhou, C. L. Baker, “Envelope-responsive neurons in areas 17 and 18 of cat,” J. Neurophysiol. 72, 2134–2150 (1994). [PubMed]
  10. Y. X. Zhou, C. L. Baker, “Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat,” J. Neurophysiol. 75, 1038–1050 (1996). [PubMed]
  11. C. L. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998). [CrossRef] [PubMed]
  12. R. Cleary, O. J. Braddick, “Direction discrimination for bandpass filtered random dot kinematograms,” Vision Res. 30, 303–316 (1990). [CrossRef]
  13. W. F. Bischof, V. Di Lollo, “On the half-cycle displacement limit of sampled directional motion,” Vision Res. 31, 649–660 (1991). [CrossRef] [PubMed]
  14. I. Ohzawa, G. C. DeAngelis, R. D. Freeman, “Stereoscopic depth discrimination in the visual cortex: neurones ideally suited as disparity detectors,” Science 249, 1037–1041 (1990). [CrossRef] [PubMed]
  15. D. J. Fleet, K. Langley, “Computational analysis of non-Fourier motion,” Vision Res. 34, 3057–3059 (1994). [CrossRef] [PubMed]
  16. N. Qian, “Computing stereo disparity and motion with known binocular cell properties,” Neural Comput. 6, 390–404 (1994). [CrossRef]
  17. N. Qian, R. A. Andersen, “A physiological model for motion–stereo integration and a unified explanation for the Pulfrich-like phenomena,” Vision Res. 37, 1683–1698 (1997). [CrossRef] [PubMed]
  18. L. M. Wilcox, R. F. Hess, “Is the site of non-linear filtering in stereopsis before or after binocular combination?” Vision Res. 36, 391–399 (1996). [CrossRef] [PubMed]
  19. L. M. Wilcox, R. F. Hess, “When stereopsis does not improve with increasing contrast,” Vision Res. 38, 3671–3680 (1998). [CrossRef]
  20. A. Glennerster, “Dmax for stereopsis and motion in random dot displays,” Vision Res. 38, 925–935 (1998). [CrossRef] [PubMed]
  21. A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995). [CrossRef] [PubMed]
  22. D. D. Landers, L. K. Cormack, “Some spatio-temporal interactions in stereopsis,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S907 (1997).
  23. M. Edwards, D. Pope, C. M. Schor, “Orientation tuning of the transient-disparity stereopsis system” Invest. Ophthalmol. Visual Sci. Suppl. 39, S191 (1998).
  24. E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985). [CrossRef] [PubMed]
  25. G. J. Burton, “Evidence for non-linear response processes in the human visual system from measurements on the thresholds of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973). [CrossRef] [PubMed]
  26. E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997). [CrossRef] [PubMed]
  27. A. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).
  28. A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns,” Vision Res. 25, 1869–1878 (1985). [CrossRef]
  29. T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992). [CrossRef] [PubMed]
  30. I. Mareschal, C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nature Neurosci. 1, 150–154 (1998). [CrossRef]
  31. R. J. Watt, M. J. Morgan, “A theory of the primitive spatial code in human vision,” Vision Res. 25, 1661–1674 (1985). [CrossRef] [PubMed]
  32. R. A. Eagle, B. J. Rogers, “Effects of dot density, patch size and contrast on the upper spatial limit for direction discrimination in random dot kinematograms,” Vision Res. 37, 545–558 (1997). [CrossRef]
  33. C. L. Baker, J. C. Boulton, K. T. Mullen, “A nonlinear chromatic motion mechanism,” Vision Res. 38, 291–302 (1998). [CrossRef] [PubMed]
  34. P. J. Bex, C. L. Baker, “The effects of distractor elements on direction discrimination in random Gabor kinematograms,” Vision Res. 37, 1761–1767 (1997). [CrossRef] [PubMed]
  35. P. J. Bex, N. Brady, R. E. Fredericksen, R. F. Hess, “Energetic motion detection,” Nature (London) 378, 670–671 (1995). [CrossRef]
  36. T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994). [CrossRef] [PubMed]
  37. Information is available from R. F. Hess at the address on the title page.
  38. N. Graham, J. Beck, A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation: effects of sign and amount of contrast,” Vision Res. 32, 719–743 (1992). [CrossRef] [PubMed]
  39. H. R. Wilson, P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992). [CrossRef]
  40. A. T. Wells, D. R. Simmons, “The influence of first-order orientation information on second-order stereopsis,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S906 (1997).
  41. L. Ziegler, R. F. Hess, “Linear and non-linear stereoscopic contributions distinguished by task,” Invest. Ophthalmol. Visual Sci. Suppl. 38, S906 (1997).
  42. L. Ziegler, R. F. Hess, “Why is there depth but no shape from uncorrelated micropatterns?” Invest. Ophthalmol. Visual Sci. Suppl. 39, S614 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited