OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 6 — Jun. 1, 1999
  • pp: 1333–1341

Generalized Lorenz–Mie theory for infinitely long elliptical cylinders

G. Gouesbet and L. Mees  »View Author Affiliations


JOSA A, Vol. 16, Issue 6, pp. 1333-1341 (1999)
http://dx.doi.org/10.1364/JOSAA.16.001333


View Full Text Article

Acrobat PDF (300 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A generalized Lorenz–Mie theory for infinite elliptical cylinders is presented. This theory describes the interaction between arbitrary shaped beams and infinitely long cylinders having an elliptical cross section.

© 1999 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(290.0290) Scattering : Scattering

Citation
G. Gouesbet and L. Mees, "Generalized Lorenz–Mie theory for infinitely long elliptical cylinders," J. Opt. Soc. Am. A 16, 1333-1341 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-6-1333


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
  2. G. Gouesbet, G. Gréhan, and B. Maheu, “Generalized Lorenz–Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, New York, 1991), pp. 339–384.
  3. G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz–Mie,” J. Opt. (Paris) 13, 97–103 (1982).
  4. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
  5. J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993).
  6. F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).
  7. G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. (Paris) 26, 225–239 (1995).
  8. G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary shaped beam,” Appl. Opt. 36, 4292–4304 (1997).
  9. K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
  10. J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).
  11. J. B. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542–5551 (1995).
  12. H. Mignon, G. Gréhan, G. Gouesbet, T. H. Hu, and C. Tropea, “Measurement of cylindrical particles with phase-Doppler anemometry,” Appl. Opt. 25, 5180–5190 (1996).
  13. N. Gauchet, T. Girasole, K. F. Ren, G. Gréhan, and G. Gouesbet, “Application of generalized Lorenz–Mie theory for cylinders to cylindrical characterization by phase-Doppler anemometry,” Opt. Diag. Eng. 2, 1–10 (1997).
  14. X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).
  15. J. A. Lock, C. L. Adler, B. R. Stone, and P. D. Zajak, “Amplification of high-order rainbows of a cylinder with an elliptical cross-section,” Appl. Opt. 37, 1527–1533 (1998).
  16. S. Lange and G. Schweiger, “Structural resonances in the total Raman- and fluorescence-scattering cross section: concentration-profile dependence,” J. Opt. Soc. Am. B 13, 1864–1872 (1996).
  17. G. Gouesbet, L. Mees, and G. Gréhan, “Partial-wave description of shaped beams in elliptical-cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).
  18. C. Yeh, “The diffraction of waves by a penetrable ribbon,” J. Math. Phys. (N.Y.) 4, 65–71 (1963).
  19. C. Yeh, “Backscattering cross section of a dielectric elliptical cylinder,” J. Opt. Soc. Am. A 55, 309–314 (1965).
  20. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I (McGraw-Hill, New York, 1953).
  21. T. J. Bromwich, “Electromagnetic waves,” Philos. Mag. 38, 143–164 (1919).
  22. F. E. Borgnis, “Elektromagnetische Eigenschwingungen dielektrischer Raüme,” Ann. Phys. (Leipzig) 35, 359–384 (1939).
  23. G. Gouesbet, G. Gréhan, B. Maheu, and K. F. Ren, “Electromagnetic scattering of shaped beams (generalized Lorenz–Mie theory),” available from G. Gouesbet, LESP, UMR 6614-CNRS, INSA de Rouen, B.P. 08, 76131 Mont-Saint-Aignan Cedex, France.
  24. R. Campbell, Théorie générale de l’équation de Mathieu (Masson et Cie, Paris, 1955).
  25. N. W. McLachlan, Theory and Application of Mathieu Functions (Clarendon, Oxford, UK, 1951).
  26. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), pp. 723–745.
  27. G. Gouesbet, “Theory of distributions and its application to beam parametrization in light scattering,” Part. Part. Syst. Charact. (to be published).
  28. G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave expansions of higher-order Gaussian beams in elliptical cylinder coordinates,” J. Opt. (to be published).
  29. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979).
  30. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
  31. G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).
  32. G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).
  33. J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. 1. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).
  34. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. 2. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).
  35. G. Gouesbet, G. Gréhan, and K. F. Ren, “Rigorous justification of the cylindrical localized approximation to speed up computations in the generalized Lorenz–Mie theory for cylinders,” J. Opt. Soc. Am. A 15, 511–523 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited