## Diffuse radiation intensity propagating through a particulate slab

JOSA A, Vol. 16, Issue 6, pp. 1362-1372 (1999)

http://dx.doi.org/10.1364/JOSAA.16.001362

Acrobat PDF (319 KB)

### Abstract

A multiple-scattering approach is used to solve the radiative transfer equation in order to describe the angular and optical depth dependence of diffuse intensity propagating through an unsupported particulate slab perpendicularly illuminated with unpolarized electromagnetic radiation. Boundary reflections are taken into account for the unscattered radiation, as is each of the successive reflection and scattering orders, which are characterized by corresponding average path-length parameters and forward-scattering ratios. The optical depth dependence of the reflection- and scattering-order coefficients is displayed for given values of the particle size parameter, particle volume fraction, relative refractive index, and optical thickness of the slab. Diffuse intensity patterns at a given optical depth, and the angular dependence of the reflected and transmitted intensities, are also considered.

© 1999 Optical Society of America

**OCIS Codes**

(160.4670) Materials : Optical materials

(260.2160) Physical optics : Energy transfer

(290.4020) Scattering : Mie theory

(290.4210) Scattering : Multiple scattering

(290.5850) Scattering : Scattering, particles

(290.7050) Scattering : Turbid media

**Citation**

William E. Vargas, "Diffuse radiation intensity propagating through a particulate slab," J. Opt. Soc. Am. A **16**, 1362-1372 (1999)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-6-1362

Sort: Year | Journal | Reset

### References

- G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).
- J. P. Briton, B. Maheu, G. Gréhan, and G. Gouesbet, “Monte Carlo simulation of multiple scattering in arbitrary 3-D geometry,” Part. Part. Syst. Charact. 9, 52–58 (1992).
- M. H. Eddowes, T. N. Mills, and D. T. Delpy, “Monte Carlo simulations of coherent backscatter for identification of the optical coefficients of biological tissues in vivo,” Appl. Opt. 34, 2261–2267 (1995).
- N. T. Melamed, “Optical properties of powders. I. Optical absorption coefficients and the absolute value of the diffuse reflectance; II. Properties of luminescent powders,” J. Appl. Phys. 34, 560–570 (1963).
- E. L. Simmons, “Diffuse reflectance spectroscopy: a comparison of the theories,” Appl. Opt. 14, 1380–1386 (1975).
- A. Mandelis, F. Boroumand, and H. Van den Bergh, “Quantitative diffuse reflectance spectroscopy of large powders: the Melamed model revisited,” Appl. Opt. 29, 2853–2860 (1990).
- K. Stamnes, S. C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
- J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
- C. M. Lam and A. Ishimaru, “Mueller matrix calculation for a slab of random medium with both random rough surfaces and discrete particles,” IEEE Trans. Antennas Propag. 42, 145–156 (1994).
- R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).
- A. H. Gandjbakhche, R. F. Bonner, and R. Nossal, “Scaling relationships for anisotropic random walks,” J. Stat. Phys. 69, 35–53 (1992).
- A. H. Gandjbakhche, R. Nossal, and R. F. Bonner, “Scaling relationships for theories of anisotropic random walks applied to tissue optics,” Appl. Opt. 32, 504–516 (1993).
- R. F. Lutomirski, A. P. Ciervo, and G. J. Hall, “Moments of multiple scattering,” Appl. Opt. 34, 7125–7136 (1995).
- V. G. Kolinko, F. F. M. de Mull, J. Greeve, and A. V. Priezzhev, “Probabilistic model of multiple light scattering based on rigorous computations of the first and second moments of photon coordinates,” Appl. Opt. 35, 4541–4550 (1996).
- P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. (Leipzig) 12, 593–601 (1931).
- J. Reichman, “Determination of absorption and scattering coefficients for nonhomogeneous media. 1. Theory,” Appl. Opt. 12, 1811–1815 (1973).
- B. Maheu, J. N. Letoulouzan, and G. Gouesbet, “Four-flux models to solve the scattering transfer equation in terms of Lorenz–Mie parameters,” Appl. Opt. 23, 3353–3362 (1984).
- C. M. Chu and S. W. Churchill, “Numerical solution of problems in multiple scattering of electromagnetic radiation,” Mult. Scatt. Electromag. Rad. 59, 855–863 (1955).
- P. S. Mudgett and L. W. Richards, “Multiple scattering calculations for technology. II,” J. Colloid Interface Sci. 39, 551–567 (1972).
- C. Whitney, “Efficient stream distributions in radiative transfer theory,” J. Quant. Spectrosc. Radiat. Transf. 14, 591–611 (1974).
- W. E. Vargas and G. A. Niklasson, “Intensity of diffuse radiation in particulate media,” J. Opt. Soc. Am. A 14, 2253–2262 (1997).
- W. E. Vargas and G. A. Niklasson, “Generalized method for evaluating scattering parameters used in radiative transfer models,” J. Opt. Soc. Am. A 14, 2243–2252 (1997).
- W. E. Vargas and G. A. Niklasson, “Applicability conditions of the Kubelka–Munk theory,” Appl. Opt. 36, 5580–5586 (1997).
- W. E. Vargas, “Generalized four-flux radiative transfer model,” Appl. Opt. 37, 2615–2623 (1998).
- W. Hartel, “Zur Theorie der Lichtstreuung durch trube Schichten besonders Trubglaser,” Licht 10, 141–143, 165, 190, 191, 214, 215, 232–234 (1940).
- C. M. Chu and S. W. Churchill, “Representation of the angular distribution of radiation scattered by a spherical particle,” J. Opt. Soc. Am. 45, 958–962 (1955).
- W. E. Vargas and G. A. Niklasson, “Forward average path-length parameter in four-flux radiative transfer models,” Appl. Opt. 36, 3735–3738 (1997).
- W. E. Vargas and G. A. Niklasson, “Forward scattering ratios and average path-length parameters in radiative transfer models,” J. Phys.: Condens. Matter 9, 9083–9096 (1997).
- G. Gobel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves Random Media 5, 413–426 (1995).
- A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
- H. G. Hecht, “The a priori calculation of the diffuse reflectance of a turbid medium,” Opt. Acta 30, 659–668 (1983).
- P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
- P. C. Waterman, “Matrix methods in potential theory and electromagnetic scattering,” J. Appl. Phys. 50, 4550–4566 (1979).
- N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt. 31, 5359–5365 (1992).
- M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
- M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55, 535–575 (1996).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.