OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 6 — Jun. 1, 1999
  • pp: 1466–1476

Spatial resolution of diffuse photon density waves

J. Ripoll, M. Nieto-Vesperinas, and Rémi Carminati  »View Author Affiliations


JOSA A, Vol. 16, Issue 6, pp. 1466-1476 (1999)
http://dx.doi.org/10.1364/JOSAA.16.001466


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

On comparison with the usual propagating scalar waves, the attenuation of diffuse photon density waves gives rise to important differences in structural information, such as higher spatial resolution in detection at short distances from objects and deviation from the Rayleigh limit at larger distances. This damping also establishes a minimum spatial resolution threshold for diffusive waves, which occurs by illumination in continuous mode, and demonstrates that in most cases spatial resolution is not improved by increasing the modulation frequency. Assessments of this formulation with numerical simulations of scattering and wave-front reconstruction in the presence of noise are given.

© 1999 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(170.5270) Medical optics and biotechnology : Photon density waves
(170.7050) Medical optics and biotechnology : Turbid media
(290.1990) Scattering : Diffusion

History
Original Manuscript: October 1, 1998
Revised Manuscript: February 5, 1999
Manuscript Accepted: February 9, 1999
Published: June 1, 1999

Citation
J. Ripoll, M. Nieto-Vesperinas, and Rémi Carminati, "Spatial resolution of diffuse photon density waves," J. Opt. Soc. Am. A 16, 1466-1476 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-6-1466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34 (1995), and references therein. [CrossRef]
  2. E. B. de Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996). [CrossRef] [PubMed]
  3. See related studies in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  4. S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for near infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991). [CrossRef]
  5. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef] [PubMed]
  6. C. P. Gonatas, M. Ishii, J. S. Leigh, J. C. Schotland, “Optical diffusion imaging using a direct inversion method,” Phys. Rev. E 52, 4361–4365 (1995). [CrossRef]
  7. C. L. Matson, N. Clark, L. McMackin, J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36, 214–220 (1997). [CrossRef] [PubMed]
  8. X. D. Li, T. Durduran, A. G. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997). [CrossRef] [PubMed]
  9. H. Wabnitz, H. Rinneberg, “Imaging in turbid media by photon density waves: spatial resolution and scaling relations,” Appl. Opt. 36, 64–74 (1997). [CrossRef] [PubMed]
  10. Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–342 (1997). [CrossRef]
  11. S. A. Walker, S. Fantini, E. Gratton, “Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media,” Appl. Opt. 36, 170–179 (1997). [CrossRef] [PubMed]
  12. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995). [CrossRef] [PubMed]
  13. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997). [CrossRef] [PubMed]
  14. P. N. den Outer, T. M. Nieuwenhuizen, A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10, 1209–1218 (1993). [CrossRef]
  15. S. Feng, F. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 35, 3826–3837 (1995). [CrossRef]
  16. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine. II. Modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997). [CrossRef] [PubMed]
  17. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997). [CrossRef]
  18. S. R. Arridge, M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1998). [CrossRef] [PubMed]
  19. S. J. Norton, T. Vo-Dinh, “Diffraction tomographic imaging with photon density waves: an explicit solution,” J. Opt. Soc. Am. A 15, 2670–2677 (1998). [CrossRef]
  20. S. A. Walker, D. A. Boas, E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt. 37, 1935–1944 (1998). [CrossRef]
  21. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumor in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998). [CrossRef]
  22. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging with diffusing light: an experimental study of the effect of background optical properties,” Appl. Opt. 37, 3564–3573 (1998). [CrossRef]
  23. B. DeBecker, A. Bulatov, J. L. Birman, “Two-dimensional inverse problem of diffusion tomography: the approach applicable for small inclusions,” Appl. Opt. 37, 4294–4299 (1998). [CrossRef]
  24. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1993).
  25. J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993). [CrossRef] [PubMed]
  26. S. R. Arridge, W. R. B. Lionheart, “Nonuniqueness in diffusion-bases optical tomography,” Opt. Lett. 23, 882–884 (1998). [CrossRef]
  27. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 3.
  28. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Chap. 3.
  29. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley—Interscience, New York, 1991), Chap. 2.
  30. For near-field optical methods see, e.g., D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993) or M. Nieto-Vesperinas, N. Garcı́a, eds., Optics at the Nanometer Scale (Kluwer Academic, Dordrecht, The Netherlands, 1996). For a recent review on the subject see J. J. Greffet, R. Carminati, Image Formation in Near Field Optics, Prog. Surf. Sci. 56, 133 (1997). [CrossRef]
  31. J. A. Sánchez-Gil, M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991). [CrossRef]
  32. A. Madrazo, M. Nieto-Vesperinas, “Scattering of light and other electromagnetic waves from a body buried beneath a highly rough random surface,” J. Opt. Soc. Am. A 14, 1859–1866 (1997). [CrossRef]
  33. J. Ripoll, A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a body over a random rough surface,” Opt. Commun. 142, 173–178 (1997). [CrossRef]
  34. J. Ripoll, M. Nieto-Vesperinas, “Scattering integral equations for diffusive waves. Detection of objects buried in diffusive media in the presence of rough interfaces,” J. Opt. Soc. Am. A (to be published).
  35. J. Ripoll, M. Nieto-Vesperinas, “Index mismatch for diffuse photon density waves at both flat and rough diffuse–diffuse interfaces,” J. Opt. Soc. Am. A (to be published).
  36. See, for example, R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995). [CrossRef]
  37. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 19, 4887–4891 (1994). [CrossRef]
  38. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992). [CrossRef] [PubMed]
  39. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited