## Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz–Mie theory for spheres

JOSA A, Vol. 16, Issue 7, pp. 1641-1650 (1999)

http://dx.doi.org/10.1364/JOSAA.16.001641

Enhanced HTML Acrobat PDF (283 KB)

### Abstract

A so-called localized approximation, allowing one to speed up the evaluation of beam shape coefficients in the generalized Lorenz–Mie theory for spheres, has been previously introduced and, in the case of Gaussian beams, rigorously justified. We examine and demonstrate the validity of this approximation for arbitrary shaped beams.

© 1999 Optical Society of America

**OCIS Codes**

(140.0140) Lasers and laser optics : Lasers and laser optics

(290.0290) Scattering : Scattering

**History**

Original Manuscript: November 17, 1998

Revised Manuscript: February 22, 1999

Manuscript Accepted: February 22, 1999

Published: July 1, 1999

**Citation**

G. Gouesbet, "Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz–Mie theory for spheres," J. Opt. Soc. Am. A **16**, 1641-1650 (1999)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-7-1641

Sort: Year | Journal | Reset

### References

- G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
- B. Maheu, G. Gouesbet, G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988). [CrossRef]
- G. Gouesbet, G. Gréhan, B. Maheu, “Generalized Lorenz–Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, New York, 1991), pp. 339–384.
- F. Onofri, G. Gréhan, G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995). [CrossRef] [PubMed]
- Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, G. Gréhan, “Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997). [CrossRef] [PubMed]
- G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” Part. Part. Syst. Charact. 11, 22–23 (1994). [CrossRef]
- G. Gouesbet, G. Gréhan, “Diffusion des faisceaux laser par des particules,” (Techniques de l’Ingénieur, 249, rue de Crimée, 75019 Paris, 1998).
- W. C. Tsai, R. J. Pogorzelski, “Eigenfunction solution of the scattering of beam radiation fields by spherical objects,” J. Opt. Soc. Am. 65, 1457–1463 (1975). [CrossRef]
- L. W. Casperson, C. Yeh, “Rayleigh–Debye scattering with focused laser beams,” Appl. Opt. 17, 1637–1643 (1978). [CrossRef] [PubMed]
- S. Colak, C. Yeh, L. W. Casperson, “Scattering of focused beams by tenuous particles,” Appl. Opt. 18, 294–302 (1979). [CrossRef] [PubMed]
- J. S. Kim, S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. 73, 303–312 (1983). [CrossRef]
- J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
- J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993). [CrossRef]
- G. Gouesbet, C. Letellier, K. F. Ren, G. Gréhan, “Discussion of two quadrature methods of evaluating beam shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542 (1996). [CrossRef] [PubMed]
- G. Gouesbet, G. Gréhan, B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory, using finite series,” J. Opt. (Paris) 19, 35–48 (1988). [CrossRef]
- G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef] [PubMed]
- G. Gouesbet, G. Gréhan, B. Maheu, “A localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
- J. A. Lock, G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
- G. Gouesbet, J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
- K. F. Ren, G. Gréhan, G. Gouesbet, “Localized approximation of generalized Lorenz–Mie theory. Faster algorithm for computations of the beam shape coefficients,” Part. Part. Syst. Charact. 9, 144–150 (1992). [CrossRef]
- J. A. Lock, “An improved Gaussian beam scattering algorithm,” Appl. Opt. 34, 559–570 (1995). [CrossRef] [PubMed]
- K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994). [CrossRef]
- G. Gouesbet, J. A. Lock, G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995). [CrossRef] [PubMed]
- K. F. Ren, G. Gouesbet, G. Gréhan, “The integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998). [CrossRef]
- G. Gouesbet, G. Gréhan, “Sur la généralisation de la théorie de Lorenz–Mie,” J. Opt. (Paris) 13, 97–103 (1982). [CrossRef]
- G. Gouesbet, “Partial wave expansions and properties of axisymmetric light beams,” Appl. Opt. 35, 1543–1555 (1996). [CrossRef] [PubMed]
- G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996). [CrossRef]
- L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
- J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
- G. Gouesbet, “Higher-order descriptions of Gaussian beams,” J. Opt. (Paris) 27, 35–50 (1996). [CrossRef]
- H. Polaert, G. Gréhan, G. Gouesbet, “Improved standard beams with applications to reverse radiation pressure,” Appl. Opt. 37, 2435–2440 (1998). [CrossRef]
- K. F. Ren, G. Gréhan, G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT—framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997). [CrossRef]
- G. Gouesbet, G. Gréhan, K. F. Ren, “Rigorous justification of the cylindrical localized approximation to speed up computations in GLMT for cylinders,” J. Opt. Soc. Am. A 15, 511–523 (1998). [CrossRef]
- G. Gouesbet, K. F. Ren, L. Mees, G. Gréhan, “The cylindrical localized approximation, to speed up computations for Gaussian beams in the GLMT for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999). [CrossRef]
- G. Gouesbet, L. Mees, G. Gréhan, K. F. Ren, “The structure of generalized Lorenz–Mie theory for elliptical infinite cylinders,” Part. Part. Syst. Charact. (to be published).
- G. Gouesbet, L. Mees, G. Gréhan, K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” submitted to Appl. Opt.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.