OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 7 — Jul. 1, 1999
  • pp: 1759–1768

Regularizing strategy for image restoration and wave-front sensing by phase diversity

O. M. Bucci, A. Capozzoli, and G. D’Elia  »View Author Affiliations


JOSA A, Vol. 16, Issue 7, pp. 1759-1768 (1999)
http://dx.doi.org/10.1364/JOSAA.16.001759


View Full Text Article

Enhanced HTML    Acrobat PDF (553 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Restoring images blurred by an unknown optical system is a problem of interest in image processing and, in particular, in terrestrial astronomy, in which the incoming radiation from celestial objects is contaminated in an unforeseeable way by passing through the atmosphere in turbulent motion. Here a blind deconvolution method of image restoration of the phase-diversity class is presented. Numerical analysis clearly shows that the algorithm is capable of finding both the unknown incoherent object and the point-spread function, which is considered a function of a phase-aberration term only, from multiple images and in the absence of a reference source. Noise and measurement errors, such as calibration errors of the detecting optical system, are explicitly taken into account. Exploiting both the physical constraint on the optical path disturbance and a regularizing functional yields a rigorously stable problem.

© 1999 Optical Society of America

History
Original Manuscript: October 1, 1998
Revised Manuscript: March 12, 1999
Manuscript Accepted: March 12, 1999
Published: July 1, 1999

Citation
O. M. Bucci, A. Capozzoli, and G. D’Elia, "Regularizing strategy for image restoration and wave-front sensing by phase diversity," J. Opt. Soc. Am. A 16, 1759-1768 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-7-1759


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Oppenheim, R. W. Schafer, T. G. Stockman, “Nonlinear filtering of multiplied and convolved signals,” Proc. IEEE 56, 1264–1291 (1968). [CrossRef]
  2. T. G. Stockman, T. M. Cannon, R. G. Ingebretsen, “Blind deconvolution through digital signal processing,” Proc. IEEE 63, 678–692 (1975). [CrossRef]
  3. D. Kundur, D. Hatzinakos, “Blind image deconvolution,” IEEE Signal Process. Mag. 13(5), 43–64 (1996). [CrossRef]
  4. D. Kundur, D. Hatzinakos, “Blind image deconvolution revisited,” IEEE Signal Process. Mag. 13(11), 61–63 (1996). [CrossRef]
  5. J. C. Nagy, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, “Space-varying restoration of optical images,” J. Opt. Soc. Am. A 14, 3162–3174 (1997). [CrossRef]
  6. M. Cannon, “Blind deconvolution of spatially invariant image blurs with phase,” IEEE Trans. Acoust. Speech Signal Process. ASSP-24, 58–63 (1976). [CrossRef]
  7. R. H. T. Bates, “Astronomical speckle imaging,” Phys. Rep. 90, 203–295 (1982). [CrossRef]
  8. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in stars images,” Astron. Astrophys. 6, 85–87 (1970).
  9. B. L. Satherley, P. J. Bones, “Zero tracks for blind deconvolution of blurred ensembles,” Appl. Opt. 33, 2197–2205 (1994). [CrossRef] [PubMed]
  10. T. J. Schulz, “Multiframe blind deconvolution of astronomical images,” J. Opt. Soc. Am. A 10, 1064–1073 (1993). [CrossRef]
  11. N. Miura, N. Baba, “Extended-object reconstruction with sequential use of iterative blind deconvolution method,” Opt. Commun. 89, 375–379 (1992). [CrossRef]
  12. R. G. Lane, “Blind deconvolution of speckle images,” J. Opt. Soc. Am. A 9, 1508–1514 (1992). [CrossRef]
  13. S. M. Jeffries, J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993). [CrossRef]
  14. N. Miura, S. Kawamura, N. Baba, S. Isobe, M. Noguchi, “Parallel scheme of the iterative blind deconvolution method for stellar object reconstruction,” Appl. Opt. 32, 6514–6520 (1993). [CrossRef] [PubMed]
  15. N. Miura, K. Ohsawa, N. Baba, “Single-frame blind deconvolution by means of frame segmentation,” Opt. Lett. 19, 695–697 (1994). [CrossRef] [PubMed]
  16. R. A. Gonsalves, R. Chidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing III, A. G. Tescher, ed., Proc. SPIE207, 32–37 (1979). [CrossRef]
  17. R. G. Paxman, J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–923 (1988). [CrossRef]
  18. R. G. Paxman, T. J. Schulz, J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992). [CrossRef]
  19. M. G. Lofdahl, G. B. Scharmer, “Wavefront sensing and image restoration from focused and defocused solar images,” Astron. Astrophys. Suppl. Ser. 107, 243–264 (1994).
  20. R. G. Paxman, J. H. Seldin, M. H. Lofdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase-diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996). [CrossRef]
  21. R. G. Lane, R. H. T. Bates, “Automatic multidimensional deconvolution,” J. Opt. Soc. Am. A 4, 180–188 (1987). [CrossRef]
  22. D. C. Ghiglia, L. A. Romero, G. A. Mastin, “Systematic approach to two-dimensional blind deconvolution by zero sheet separation,” J. Opt. Soc. Am. A 10, 1024–1036 (1993). [CrossRef]
  23. P. J. Jones, C. R. Parker, B. L. Satherley, R. W. Watson, “Deconvolution and phase retrieval with use of zero sheets,” J. Opt. Soc. Am. A 12, 1842–11857 (1995). [CrossRef]
  24. G. R. Ayers, J. C. Dainty, “Iterative blind deconvolution method and its applications,” Opt. Lett. 13, 547–549 (1988). [CrossRef]
  25. B. L. K. Davey, R. G. Lane, R. H. T. Bates, “Blind deconvolution of noisy complex-valued images,” Opt. Commun. 69, 353–356 (1989). [CrossRef]
  26. M. Bertero, Linear Inverse and Ill-Posed Problems (Academic, San Diego, Calif., 1989).
  27. D. L. Snyder, A. M. Hammoud, R. L. White, “Image recovery from data acquired with a charge-coupled-device camera,” J. Opt. Soc. Am. A 10, 1014–1023 (1993). [CrossRef] [PubMed]
  28. R. G. Lane, R. A. Johnston, R. Irwan, T. J. Connoly, “Regularized blind deconvolution,” in Signal Recovery and Synthesis, Vol. 11 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 5–7.
  29. Y. Yang, N. P. Galatsanos, H. Stark, “Projection-based blind deconvolution,” J. Opt. Soc. Am. A 11, 2401–2409 (1994). [CrossRef]
  30. N. F. Law, R. G. Lane, “Blind deconvolution using least squares minimization,” Opt. Commun. 128, 341–352 (1996). [CrossRef]
  31. T. J. Holmes, “Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach,” J. Opt. Soc. Am. A 9, 1052–1061 (1992). [CrossRef] [PubMed]
  32. E. Thiébaut, J.-M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485–492 (1995). [CrossRef]
  33. O. M. Bucci, A. Capozzoli, G. D’Elia, “New technique for wavefront reconstruction in optical telescopes,” J. Opt. Soc. Am. A 14, 3394–3401 (1997). [CrossRef]
  34. O. M. Bucci, A. Capozzoli, G. D’Elia, “A method for image restoration and wavefront sensing by using phase diversity,” in Signal Recovery and Synthesis, Vol. 11 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 28–30.
  35. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  36. V. I. Tatarski, Wave Propagation in a Turbulent Medium (Dover, New York, 1961).
  37. R. P. Boas, Entire Functions (Academic, San Diego, Calif., 1954).
  38. A. Tikhonov, V. Arsenine, Méthodes de Résolution de Problèmes Mal Posées (Mir, Moscow, 1976).
  39. T. Isernia, G. Leone, R. Pierri, “The phase retrieval in near zone as a nonlinear inverse problem: the planar scanning,” in Italian Recent Advances in Applied Electromagnetics, G. Franceschetti, R. Pierri, eds. (Liguori, Naples, 1991), pp. 117–134.
  40. L. Kantorovitch, G. Akilov, Analyse Fonctionelle (Mir, Moscow, 1981).
  41. V. P. Mikhailov, Partial Differential Equations (Mir, Moscow, 1978).
  42. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 66, 207–211 (1976). [CrossRef]
  43. R. Horst, P. M. Pardalos, eds., Handbook of Global Optimization (Kluwer, Dordrecht, The Netherlands, 1995).
  44. J. A. Scales, M. L. Smith, T. L. Fischer, “Global optimization methods for multimodal inverse problems,” J. Comput. Phys. 103, 258–268 (1992). [CrossRef]
  45. B. C. McCallum, “Blind deconvolution by simulated annealing,” Opt. Commun. 75, 101–105 (1990). [CrossRef]
  46. O. M. Bucci, A. Capozzoli, G. D’Elia, “A hybrid evolutionary algorithm in the diagnosis of reflector distortions,” presented at the Journées Internationales de Nice sur les Antennes, November 17–19, 1998, Nice, France.
  47. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited