OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 7 — Jul. 1, 1999
  • pp: 1759–1768

Regularizing strategy for image restoration and wave-front sensing by phase diversity

O. M. Bucci, A. Capozzoli, and G. D'Elia  »View Author Affiliations

JOSA A, Vol. 16, Issue 7, pp. 1759-1768 (1999)

View Full Text Article

Acrobat PDF (553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Restoring images blurred by an unknown optical system is a problem of interest in image processing and, in particular, in terrestrial astronomy, in which the incoming radiation from celestial objects is contaminated in an unforeseeable way by passing through the atmosphere in turbulent motion. Here a blind deconvolution method of image restoration of the phase-diversity class is presented. Numerical analysis clearly shows that the algorithm is capable of finding both the unknown incoherent object and the point-spread function, which is considered a function of a phase-aberration term only, from multiple images and in the absence of a reference source. Noise and measurement errors, such as calibration errors of the detecting optical system, are explicitly taken into account. Exploiting both the physical constraint on the optical path disturbance and a regularizing functional yields a rigorously stable problem.

© 1999 Optical Society of America

O. M. Bucci, A. Capozzoli, and G. D'Elia, "Regularizing strategy for image restoration and wave-front sensing by phase diversity," J. Opt. Soc. Am. A 16, 1759-1768 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. V. Oppenheim, R. W. Schafer, and T. G. Stockman, “Nonlinear filtering of multiplied and convolved signals,” Proc. IEEE 56, 1264–1291 (1968).
  2. T. G. Stockman, T. M. Cannon, and R. G. Ingebretsen, “Blind deconvolution through digital signal processing,” Proc. IEEE 63, 678–692 (1975).
  3. D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Signal Process. Mag. 13(5), 43–64 (1996).
  4. D. Kundur and D. Hatzinakos, “Blind image deconvolution revisited,” IEEE Signal Process. Mag. 13(11), 61–63 (1996).
  5. J. C. Nagy, V. P. Pauca, R. J. Plemmons, and T. C. Torgersen, “Space-varying restoration of optical images,” J. Opt. Soc. Am. A 14, 3162–3174 (1997).
  6. M. Cannon, “Blind deconvolution of spatially invariant image blurs with phase,” IEEE Trans. Acoust. Speech Signal Process. ASSP-24, 58–63 (1976).
  7. R. H. T. Bates, “Astronomical speckle imaging,” Phys. Rep. 90, 203–295 (1982).
  8. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in stars images,” Astron. Astrophys. 6, 85–87 (1970).
  9. B. L. Satherley and P. J. Bones, “Zero tracks for blind deconvolution of blurred ensembles,” Appl. Opt. 33, 2197–2205 (1994).
  10. T. J. Schulz, “Multiframe blind deconvolution of astronomical images,” J. Opt. Soc. Am. A 10, 1064–1073 (1993).
  11. N. Miura and N. Baba, “Extended-object reconstruction with sequential use of iterative blind deconvolution method,” Opt. Commun. 89, 375–379 (1992).
  12. R. G. Lane, “Blind deconvolution of speckle images,” J. Opt. Soc. Am. A 9, 1508–1514 (1992).
  13. S. M. Jeffries and J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution,” Astrophys. J. 415, 862–874 (1993).
  14. N. Miura, S. Kawamura, N. Baba, S. Isobe, and M. Noguchi, “Parallel scheme of the iterative blind deconvolution method for stellar object reconstruction,” Appl. Opt. 32, 6514–6520 (1993).
  15. N. Miura, K. Ohsawa, and N. Baba, “Single-frame blind deconvolution by means of frame segmentation,” Opt. Lett. 19, 695–697 (1994).
  16. R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing III, A. G. Tescher, ed., Proc. SPIE 207, 32–37 (1979).
  17. R. G. Paxman and J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–923 (1988).
  18. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992).
  19. M. G. Lofdahl and G. B. Scharmer, “Wavefront sensing and image restoration from focused and defocused solar images,” Astron. Astrophys. Suppl. Ser. 107, 243–264 (1994).
  20. R. G. Paxman, J. H. Seldin, M. H. Lofdahl, G. B. Scharmer, and C. U. Keller, “Evaluation of phase-diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996).
  21. R. G. Lane and R. H. T. Bates, “Automatic multidimensional deconvolution,” J. Opt. Soc. Am. A 4, 180–188 (1987).
  22. D. C. Ghiglia, L. A. Romero, and G. A. Mastin, “Systematic approach to two-dimensional blind deconvolution by zero sheet separation,” J. Opt. Soc. Am. A 10, 1024–1036 (1993).
  23. P. J. Jones, C. R. Parker, B. L. Satherley, and R. W. Watson, “Deconvolution and phase retrieval with use of zero sheets,” J. Opt. Soc. Am. A 12, 1842–11857 (1995).
  24. G. R. Ayers and J. C. Dainty, “Iterative blind deconvolution method and its applications,” Opt. Lett. 13, 547–549 (1988).
  25. B. L. K. Davey, R. G. Lane, and R. H. T. Bates, “Blind deconvolution of noisy complex-valued images,” Opt. Commun. 69, 353–356 (1989).
  26. M. Bertero, Linear Inverse and Ill-Posed Problems (Academic, San Diego, Calif., 1989).
  27. D. L. Snyder, A. M. Hammoud, and R. L. White, “Image recovery from data acquired with a charge-coupled-device camera,” J. Opt. Soc. Am. A 10, 1014–1023 (1993).
  28. R. G. Lane, R. A. Johnston, R. Irwan, and T. J. Connoly, “Regularized blind deconvolution,” in Signal Recovery and Synthesis, Vol. 11 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 5–7.
  29. Y. Yang, N. P. Galatsanos, and H. Stark, “Projection-based blind deconvolution,” J. Opt. Soc. Am. A 11, 2401–2409 (1994).
  30. N. F. Law and R. G. Lane, “Blind deconvolution using least squares minimization,” Opt. Commun. 128, 341–352 (1996).
  31. T. J. Holmes, “Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach,” J. Opt. Soc. Am. A 9, 1052–1061 (1992).
  32. E. Thiébaut and J.-M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485–492 (1995).
  33. O. M. Bucci, A. Capozzoli, and G. D’Elia, “New technique for wavefront reconstruction in optical telescopes,” J. Opt. Soc. Am. A 14, 3394–3401 (1997).
  34. O. M. Bucci, A. Capozzoli, and G. D’Elia, “A method for image restoration and wavefront sensing by using phase diversity,” in Signal Recovery and Synthesis, Vol. 11 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 28–30.
  35. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  36. V. I. Tatarski, Wave Propagation in a Turbulent Medium (Dover, New York, 1961).
  37. R. P. Boas, Entire Functions (Academic, San Diego, Calif., 1954).
  38. A. Tikhonov and V. Arsenine, Méthodes de Résolution de Problèmes Mal Posées (Mir, Moscow, 1976).
  39. T. Isernia, G. Leone, and R. Pierri, “The phase retrieval in near zone as a nonlinear inverse problem: the planar scanning,” in Italian Recent Advances in Applied Electromagnetics, G. Franceschetti and R. Pierri, eds. (Liguori, Naples, 1991), pp. 117–134.
  40. L. Kantorovitch and G. Akilov, Analyse Fonctionelle (Mir, Moscow, 1981).
  41. V. P. Mikhailov, Partial Differential Equations (Mir, Moscow, 1978).
  42. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 66, 207–211 (1976).
  43. R. Horst and P. M. Pardalos, eds., Handbook of Global Optimization (Kluwer, Dordrecht, The Netherlands, 1995).
  44. J. A. Scales, M. L. Smith, and T. L. Fischer, “Global optimization methods for multimodal inverse problems,” J. Comput. Phys. 103, 258–268 (1992).
  45. B. C. McCallum, “Blind deconvolution by simulated annealing,” Opt. Commun. 75, 101–105 (1990).
  46. O. M. Bucci, A. Capozzoli, and G. D’Elia, “A hybrid evolutionary algorithm in the diagnosis of reflector distortions,” presented at the Journées Internationales de Nice sur les Antennes, November 17–19, 1998, Nice, France.
  47. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited