OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 7 — Jul. 1, 1999
  • pp: 1838–1844

Direct method for phase retrieval from the intensity of cylindrical wave fronts

Kieran G. Larkin and C. J. R. Sheppard  »View Author Affiliations

JOSA A, Vol. 16, Issue 7, pp. 1838-1844 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (596 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phase-retrieval problem for a physical system with strong support constraints is investigated. Propagation of an optical field in a system with no variation along one transverse axis results in cylindrical wave fronts. Scalar propagation in such systems is a purely two-dimensional process. We show that, given the optical intensity in a plane, the phase of the wave field can be calculated directly if the system has this special symmetry. The procedure relies on a simple geometric relation between the system pupil function (or angular spectrum) and the system optical transfer function in the Debye theory of scalar wave focusing. The inherent autocorrelation operation can be undone, and the phase directly retrieved, with a simple coordinate transformation.

© 1999 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1960) Diffraction and gratings : Diffraction theory
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.2590) Fourier optics and signal processing : ABCD transforms
(100.0100) Image processing : Image processing
(100.1830) Image processing : Deconvolution
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(120.5060) Instrumentation, measurement, and metrology : Phase modulation

Original Manuscript: October 6, 1998
Revised Manuscript: March 11, 1999
Manuscript Accepted: March 11, 1999
Published: July 1, 1999

Kieran G. Larkin and C. J. R. Sheppard, "Direct method for phase retrieval from the intensity of cylindrical wave fronts," J. Opt. Soc. Am. A 16, 1838-1844 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. G. Raymer, M. Beck, D. F. McAlister, “Complex wavefield reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994). [CrossRef] [PubMed]
  2. D. F. McAlister, M. Beck, L. Clarke, A. Mayer, M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995). [CrossRef] [PubMed]
  3. E. Collett, E. Wolf, “Is complete spatial coherence necessary for the generation of highly directional light beams?” Opt. Lett. 2, 27–29 (1978). [CrossRef] [PubMed]
  4. F. Gori, M. Santarsiero, G. Guattari, “Coherence and the spatial distribution of intensity,” J. Opt. Soc. Am. A 10, 673–679 (1993). [CrossRef]
  5. T. E. Gureyev, A. Roberts, K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995). [CrossRef]
  6. M. R. Teague, “Irradiance moments: their propagation and use for unique retrieval of phases,” J. Opt. Soc. Am. A 72, 1199–1209 (1982). [CrossRef]
  7. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  8. A. Walther, “The question of phase retrieval in optics,” Opt. Acta 10, 41–49 (1962). [CrossRef]
  9. I. M. Bruck, L. G. Sodin, “On the ambiguity of the image restoration problem,” Opt. Commun. 30, 304–308 (1979). [CrossRef]
  10. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978). [CrossRef] [PubMed]
  11. M. A. Fiddy, B. J. Brames, J. C. Dainty, “Enforcing irreducibility for phase retrieval in two dimensions,” Opt. Lett. 8, 96–98 (1983). [CrossRef] [PubMed]
  12. R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension: underlying theory,” Optik 61, 247–262 (1982).
  13. R. W. Gerschberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  14. J. R. Fienup, “Phase retrieval using boundary conditions,” J. Opt. Soc. Am. A 3, 284–288 (1986). [CrossRef]
  15. M. Kaveh, M. Soumekh, “Computer-assisted diffraction tomography,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, Orlando, Fla., 1987), pp. 369–413.
  16. M. H. Maleki, A. J. Devaney, A. Schatzberg, “Tomographic reconstruction from optical scattered intensities,” J. Opt. Soc. Am. A 9, 1356–1363 (1992). [CrossRef]
  17. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336–350 (1982). [CrossRef] [PubMed]
  18. H. P. Baltes, “Introduction,” in Inverse Source Problems, H. P. Baltes, ed. (Springer-Verlag, Berlin, 1978), pp. 1–10.
  19. H. A. Ferweda, “The phase reconstruction problem for wave amplitudes and coherence functions,” in Inverse Source Problems, H. P. Baltes, ed. (Springer-Verlag, Berlin, 1978), pp. 13–38.
  20. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969). [CrossRef]
  21. M. H. Maleki, A. J. Devaney, “Phase retrieval in inverse scattering,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 398–408 (1992). [CrossRef]
  22. M. H. Maleki, A. J. Devaney, “Holographic techniques for inverse scattering and tomographic imaging,” in Practical Holography VIII, S. A. Benton, ed., Proc. SPIE2176, 184–194 (1994). [CrossRef]
  23. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985). [CrossRef]
  24. P. J. Shaw, D. A. Agard, Y. Hiraoka, J. W. Sedat, “Tilted view reconstruction in optical microscopy,” Biophys. J. 55, 101–110 (1989). [CrossRef] [PubMed]
  25. C. J. Cogswell, K. G. Larkin, H. U. Klemm, “Fluorescence microtomography: multiangle image acquisition and 3D digital reconstruction,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, eds., Proc. SPIE2655, 109–115 (1996). [CrossRef]
  26. T. C. Wedberg, J. Stamnes, “Experimental examination of the quantitative imaging properties of optical diffraction tomography,” J. Opt. Soc. Am. A 12, 493–500 (1995). [CrossRef]
  27. In practice we have access only to discretely sampled measurements over a finite region of space. It is a straightforward procedure to include these limitations and the computation artifacts that ensue. The main effect, which is due to the finite area, is a blurring in the angular spectrum domain.
  28. C. J. R. Sheppard, K. G. Larkin, “Vectorial pupil functions and vectorial transfer functions,” Optik 107, 79–87 (1997).
  29. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image,” J. Opt. Soc. Am. 54, 240–244 (1964). [CrossRef]
  30. C. J. R. Sheppard, “The spatial frequency cut-off in three-dimensional imaging,” Optik 72, 131–133 (1986).
  31. B. R. Frieden, “Optical transfer of the three-dimensional object,” J. Opt. Soc. Am. 57, 56–66 (1967). [CrossRef]
  32. L. Mertz, Transformations in Optics (Wiley, New York, 1965).
  33. C. J. R. Sheppard, T. J. Connolly, M. Gu, “Scattering by a one-dimensional rough surface, and surface profile reconstruction confocal imaging,” Phys. Rev. Lett. 70, 1409–1412 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited