OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 8 — Aug. 1, 1999
  • pp: 1997–2006

Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films

R. W. Collins and Joohyun Koh  »View Author Affiliations


JOSA A, Vol. 16, Issue 8, pp. 1997-2006 (1999)
http://dx.doi.org/10.1364/JOSAA.16.001997


View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the design of a high-speed multichannel ellipsometer in the optical configuration PC1r(ω1)SC2r(ω2)A having frequency-coupled rotating compensators (C1r and C2r) and a fixed polarizer and analyzer (P and A) symmetrically placed about the sample (S) on the polarization generation and detection arms of the instrument. For this instrument the frequency-coupled compensators rotate continuously at ω1=5ω and ω2=3ω, where π/ω is the fundamental optical period. Although the dual rotating-compensator configuration has been proposed and demonstrated earlier, we focus on its extension to real-time Mueller matrix spectroscopy of surface modification and thin-film growth utilizing high-speed multichannel detection with a wide spectral range. The proposed instrument design provides the capability of extracting all 16 elements of the unnormalized Mueller matrix of an evolving sample at 1024 points from 1.5 to 6.5 eV with potential acquisition and repetition times of 0.2 s. Techniques of data acquisition, data reduction, and instrument calibration are described for the general case of arbitrary compensator retardances and polarizer and analyzer angles. We expect that the proposed instrument will have important applications in studies of surfaces and thin films that exhibit anisotropy and inhomogeneity.

© 1999 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(310.0310) Thin films : Thin films
(310.3840) Thin films : Materials and process characterization

History
Original Manuscript: January 6, 1999
Revised Manuscript: March 22, 1999
Manuscript Accepted: March 22, 1999
Published: August 1, 1999

Citation
R. W. Collins and Joohyun Koh, "Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films," J. Opt. Soc. Am. A 16, 1997-2006 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-8-1997

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited