OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 16, Iss. 9 — Sep. 1, 1999
  • pp: 2092–2102

Spectrally resolved white-light interferometry for measurement of ocular dispersion

Daniel X. Hammer, Ashley J. Welch, Gary D. Noojin, Robert J. Thomas, David J. Stolarski, and Benjamin A. Rockwell  »View Author Affiliations


JOSA A, Vol. 16, Issue 9, pp. 2092-2102 (1999)
http://dx.doi.org/10.1364/JOSAA.16.002092


View Full Text Article

Acrobat PDF (477 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectrally resolved white-light interferometry was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. Verification of the technique’s efficacy was substantiated by accurate measurement of the dispersive properties of water and fused silica, which have both been well-characterized in the past by single-wavelength measurement of the refractive index. The dispersion of bovine and rabbit aqueous and vitreous humors was measured from 400 to 1100 nm. In addition, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humors extracted from goat and rhesus monkey eyes. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. The principles of white-light interferometry, including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

© 1999 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(260.2030) Physical optics : Dispersion
(290.3030) Scattering : Index measurements

Citation
Daniel X. Hammer, Ashley J. Welch, Gary D. Noojin, Robert J. Thomas, David J. Stolarski, and Benjamin A. Rockwell, "Spectrally resolved white-light interferometry for measurement of ocular dispersion," J. Opt. Soc. Am. A 16, 2092-2102 (1999)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-9-2092


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Sáinz, J. Calatroni, and G. Tribillon, “Refractometry of liquid samples with spectrally resolved white-light interferometry,” Meas. Sci. Technol. 1, 356–361 (1990).
  2. A. L. Guerrero, C. Sáinz, H. Perrin, R. Castell, and J. Calatroni, “Refractive index distribution measurements by means of spectrally resolved white-light interferometry,” Opt. Laser Technol. 24, 333–339 (1992).
  3. C. Sáinz, P. Jourdain, R. Escalona, and J. Calatroni, “Real time interferometric measurements of dispersion curves,” Opt. Commun. 111, 632–641 (1994).
  4. D. J. Stolarski, R. J. Thomas, G. D. Noojin, D. J. Payne, and B. A. Rockwell, “White-light interferometric measurements of aqueous media dispersive properties,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE 2975, 155–162 (1997).
  5. S. Diddams and J.-C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996).
  6. C. D. Mobley, “The optical properties of water,” in Handbook of Optics: Fundamentals, Techniques, and Design, M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 43.17–43.18.
  7. H. El-Kashef, “Optical and electrical properties of materials,” Rev. Sci. Instrum. 65, 2056–2061 (1994).
  8. E. Moreels, C. de Greef, and R. Finsy, “Laser light refractometer,” Appl. Opt. 23, 3010–3013 (1984).
  9. A. A. Zaidi, Y. Makdisi, K. S. Bhatia, and I. Abutahun, “Accurate method for the determination of the refractive index of liquids using a laser,” Rev. Sci. Instrum. 60, 803–805 (1989).
  10. K. Kuhler, E. L. Dereniak, and M. Buchanan, “Measurement of the index of refraction of the plastic phenoxy PKFE,” Appl. Opt. 30, 1711–1714 (1991).
  11. S. Nemoto, “Measurement of the refractive index of liquid using laser beam displacement,” Appl. Opt. 31, 6690–6694 (1992).
  12. H. M. Dobbins and E. R. Peck, “Change of refractive index of water as a function of temperature,” J. Opt. Soc. Am. 63, 318–320 (1973).
  13. G. Abbate, A. Attanasio, U. Bernini, E. Ragozzino, and R. Somma, “The direct determination of the temperature dependence of the refractive index of liquids and solids,” J. Phys. D 9, 1945–1951 (1976).
  14. W. Lu and W. M. Worek, “Two-wavelength interferometric technique for measuring the refractive index of salt-water solutions,” Appl. Opt. 32, 3992–4002 (1993).
  15. D. Stolarski, G. Noojin, R. Thomas, and B. Rockwell, “Interferometric measurement of index of refraction as a function of wavelength in ocular media,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE 2681, 420–426 (1996).
  16. B. Richerzhagen, “Interferometer for measuring the absolute refractive index of liquid water as a function of temperature at 1.064 μm,” Appl. Opt. 35, 1650–1653 (1996).
  17. J. M. St-Arnaud, J. Ge, J. Orbriot, and T. K. Bose, “An accurate method for refractive index measurements of liquids using two Michelson laser interferometers,” Rev. Sci. Instrum. 62, 1411–1414 (1991).
  18. A. Suhadolnik, A. Babnik, and J. Mozina, “Refractive index measurement with optical fiber Mach-Zehnder interferometer,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. SPIE 1796, 364–370 (1992).
  19. T. H. Barnes, K. Matsumoto, T. Eiju, K. Matsuda, and N. Ooyama, “Grating interferometer with extremely high stability, suitable for measuring small refractive index changes,” Appl. Opt. 30, 745–751 (1991).
  20. B. J. Pernick, “Nonlinear regression analysis for the Sellmeier dispersion equation of CdS,” Appl. Opt. 22, 1133–1134 (1983).
  21. R. H. H. Kröger, “Methods to estimate dispersion in vertebrate ocular media,” J. Opt. Soc. Am. A 9, 1486–1490 (1992).
  22. C. K. Carniglia, K. N. Schrader, P. A. O'Connell, and S. R. Tuenge, “Refractive index determination using an orthogonalized dispersion equation,” Appl. Opt. 28, 2902–2906 (1989).
  23. N. E. Dorsey, Properties of the Ordinary Water Substance in All Its Phases (Reinhold, New York, 1940).
  24. M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 1059–1077.
  25. L. W. Tilton and J. K. Taylor, “Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60°,” J. Res. Natl. Bur. Stand. 20, 419–477 (1938).
  26. G. Westheimer, “Optical properties of vertebrae eyes,” in Physiology of Photoreceptor Organs, Vol. VII/2 of Handbook of Sensory Physiology, M. G. F. Fuortes, ed. (Springer-Verlag, Berlin, 1972), Chap. 11, pp. 449–482.
  27. Y. Le Grand and S. G. E. Hage, Physiological Optics (Springer-Verlag, New York, 1980).
  28. A. Hughes, “A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations,” Vision Res. 19, 1273–1275 (1979).
  29. C. J. Murphy and H. C. Howland, “The optics of comparative ophthalmoscopy,” Vision Res. 27, 599–607 (1987).
  30. Y. Le Grand, Form and Space Vision (Indiana U. Press, Bloomington, 1967), pp. 5–9.
  31. J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
  32. T. Mandelman and J. G. Sivak, “Longitudinal chromatic aberration of the vertebrate eye,” Vision Res. 23, 1555–1559 (1983).
  33. A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices, and chromatic aberration for the rat eye,” Vision Res. 23, 1351–1361 (1983).
  34. S. Nakao and S. Fujimoto, “Model of the refractive-index distribution in the rabbit crystalline lens,” J. Opt. Soc. Am. 58, 1351–1361 (1968).
  35. R. H. H. Kröger and M. C. W. Campbell, “Dispersion and longitudinal chromatic aberration of the crystalline lens of the African cichlid fish Haplochromis burtoni,” J. Opt. Soc. Am. A 13, 2341–2347 (1996).
  36. D. A. Palmer and J. Sivak, “Crystalline lens dispersion,” J. Opt. Soc. Am. 71, 780–782 (1981).
  37. P. Simonet and M. C. W. Campbell, “The optical tranverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
  38. B. Gilmartin and R. E. Hogan, “The magnitude of the longitudinal chromatic aberration of the human eye between 458 and 633-nm,” Vision Res. 11, 1747–1753 (1985).
  39. F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic, London, 1990).
  40. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
  41. W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66, 25–33 (1998).
  42. E. Hecht, Optics, 3rd ed. (Addison Wesley Longman, Reading, Mass., 1998).
  43. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
  44. R. W. Austin and G. Halikas, “The index of refraction of seawater,” Tech. Rep. No. SIO ref. no. 76-1 (Scripps Institution of Oceanography, University of California, San Diego, Calif. 1976).
  45. E. R. Peck, “Sellmeier fits with linear regression; multiple data sets; dispersion formulas for helium,” Appl. Opt. 22, 2906–2913 (1983).
  46. K. Schmid and A. Penzkofer, “Refractive-index measurements with a Pellin–Broca prism apparatus,” Appl. Opt. 22, 1824–1827 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited