OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 16, Iss. 9 — Sep. 1, 1999
  • pp: 2281–2285

Exact wave-front reconstruction from two lateral shearing interferograms

C. Elster and I. Weingärtner  »View Author Affiliations

JOSA A, Vol. 16, Issue 9, pp. 2281-2285 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (123 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new method is presented for the reconstruction of a one-dimensional wave front on the basis of difference measurements from two shearing interferograms. The proposed algorithm reconstructs any wave front exactly up to an arbitrary constant. The method is not restricted to small shears. However, the shearing parameters have to be chosen such that certain constraints are satisfied. A procedure for determining such shearing parameters is given. In addition, it is shown that the procedure is stable with respect to noise introduced into the differences.

© 1999 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

Original Manuscript: November 19, 1998
Revised Manuscript: February 8, 1999
Manuscript Accepted: February 8, 1999
Published: September 1, 1999

C. Elster and I. Weingärtner, "Exact wave-front reconstruction from two lateral shearing interferograms," J. Opt. Soc. Am. A 16, 2281-2285 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Bäumer, “Quantitative Mikro-Messtechnik mit einem Lateral Shearing Interferometer,” Ph.D. thesis (Optics Institute, Berlin Technical University, Berlin, 1995).
  2. K. R. Freischlad, C. L. Koliopoulos, “Modal estimation of a wave front from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3, 1852–1861 (1986). [CrossRef]
  3. G. Harbers, P. J. Kunst, G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt. 35, 6162–6172 (1996). [CrossRef] [PubMed]
  4. H. Schreiber, J. Schwider, “Lateral shearing interferometer based on two Ronchi gratings in series,” Appl. Opt. 36, 5321–5324 (1997). [CrossRef] [PubMed]
  5. M. Servin, D. Malacara, J. L. Marroquin, “Wave-front recovery from two orthogonal sheared interferograms,” Appl. Opt. 35, 4343–4348 (1996). [CrossRef] [PubMed]
  6. F. Roddier, C. Roddier, “Phase closure with rotational shear interferometers,” Opt. Commun. 60, 350–352 (1986). [CrossRef]
  7. E. Ribak, “Phase closure with rotational shear interferometer,” Appl. Opt. 26, 197–199 (1987). [CrossRef] [PubMed]
  8. J. W. Hardy, J. E. Lefebvre, C. L. Koliopoulos, “Real-time atmospheric compensation,” J. Opt. Soc. Am. 67, 360–369 (1977). [CrossRef]
  9. S. N. Srivastava, M. S. Tomar, R. S. Kasana, “Determination of the linear thermal expansion coefficient of long metallic bars by a Murty shearing interferometer,” Opt. Laser Technol. 22, 283–286 (1990). [CrossRef]
  10. H. von Brug, “Zernike polynomials as a basis for wave-front fitting in lateral shearing interferometry,” Appl. Opt. 36, 2788–2790 (1997). [CrossRef]
  11. D. L. Fried, “Least-squares fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977). [CrossRef]
  12. R. L. Frost, C. K. Rushforth, B. S. Baxter, “Fast-FFT-based algorithm for phase estimation in speckle imaging,” Appl. Opt. 18, 2056–2061 (1979). [CrossRef] [PubMed]
  13. D. C. Ghiglia, L. A. Romero, “Direct phase estimation from phase differences using elliptic partial differential equation solvers,” Opt. Lett. 14, 1107–1109 (1989). [CrossRef] [PubMed]
  14. F. Guse, “Auswertung von Messungen mit Optimierungsverfahren demonstriert an Interferometrie und Ellipsometrie,” Ph.D. thesis (Optics Institute, Berlin Technical University, Berlin, 1996).
  15. R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375–378 (1977). [CrossRef]
  16. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69, 393–399 (1979). [CrossRef]
  17. G. W. R. Leibbrandt, G. Harbers, P. J. Kunst, “Wave-front analysis with high accuracy by use of a double-grating lateral shearing interferometer,” Appl. Opt. 35, 6151–6161 (1996). [CrossRef] [PubMed]
  18. S. Loheide, I. Weingärtner, “New procedure for wave front reconstruction,” Optik (Stuttgart) 108, 53–62 (1998).
  19. R. J. Noll, “Phase estimates from slope-type wave-front sensors,” J. Opt. Soc. Am. 68, 139–140 (1978). [CrossRef]
  20. M. P. Rimmer, “Method for evaluating lateral shearing interferograms,” Appl. Opt. 13, 623–629 (1974). [CrossRef] [PubMed]
  21. M. P. Rimmer, J. C. Wyant, “Evaluation of large aberrations using a lateral-shear interferometer having variable shear,” Appl. Opt. 14, 142–150 (1975). [CrossRef] [PubMed]
  22. F. Roddier, C. Roddier, “Wavefront reconstruction using iterative Fourier transforms,” Appl. Opt. 30, 1325–1327 (1991). [CrossRef] [PubMed]
  23. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980). [CrossRef]
  24. H. Takajo, T. Takahashi, “Least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 416–425 (1988). [CrossRef]
  25. X. Tian, M. Itoh, T. Yatagai, “Simple algorithm for large-grid phase reconstruction of lateral-shearing interferometry,” Appl. Opt. 34, 7213–7220 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited