OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 1 — Jan. 1, 2000
  • pp: 101–106

Computational study of diffraction patterns for near-field Fresnel and Gabor zone plates

T. D. Beynon and R. M. R. Strange  »View Author Affiliations

JOSA A, Vol. 17, Issue 1, pp. 101-106 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near-field designs of Fresnel and Gabor zone plates are computationally analyzed by using versions that allow the foci to be brought closer to the plate than in the usual far-field applications. It is found that the Fresnel plate has a dominant primary conjugate pair of foci well inside the far-field region and a more intense primary focus and smaller off-focal-plane sidelobes than the near-field Gabor systems, thus yielding a superior imaging performance.

© 2000 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(080.3620) Geometric optics : Lens system design
(260.1960) Physical optics : Diffraction theory
(350.4010) Other areas of optics : Microwaves

Original Manuscript: February 9, 1999
Revised Manuscript: July 26, 1999
Manuscript Accepted: July 26, 1999
Published: January 1, 2000

T. D. Beynon and R. M. R. Strange, "Computational study of diffraction patterns for near-field Fresnel and Gabor zone plates," J. Opt. Soc. Am. A 17, 101-106 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. H. Barrett, W. Swindell, Radiological Imaging (Academic, London, 1981).
  2. T. D. Beynon, I. Kirk, T. R. Mathews, “Gabor zone plate with binary transmittance values,” Opt. Lett. 17, 544–546 (1992). [CrossRef] [PubMed]
  3. P. W. McOwan, M. S. Gordon, W. J. Hossack, “A switchable liquid crystal binary Gabor lens,” Opt. Commun. 103, 189–193 (1993). [CrossRef]
  4. M. A. Gouker, S. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Tech. 40, 968–977 (1992). [CrossRef]
  5. Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by circular plate and circular hole,” J. Phys. Soc. Jpn. 10, 285–304 (1955). [CrossRef]
  6. S. Inawashiro, “Diffraction of electromagnetic waves from an electric dipole by a conducting circular disc,” J. Phys. Soc. Jpn. 18, 273–287 (1963). [CrossRef]
  7. Y. Nomura, S. Katsura, “Diffraction of electromagnetic waves by ribbon and slit,” J. Phys. Soc. Jpn. 12, 190–200 (1957). [CrossRef]
  8. S. Cornbleet, Microwave Optics (Academic, London, 1976).
  9. Y. Ji, M. Fujita, “Design and analysis of a folded Fresnel zone plate antenna,” Int. J. Infrared Millim. Waves 15, 1385–1406 (1994). [CrossRef]
  10. G. W. Farnell, “Calculated intensity and phase distribution in the image space of a microwave lens,” Can. J. Phys. 35, 777–783 (1957). [CrossRef]
  11. F. Sobel, F. L. Wentworth, J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100–300 GHz region,” IRE Trans. Microwave Theory Tech. MTT9, 512–518 (1961).
  12. W. G. Sterns, “Near-zone field studies of quasi-optical antennas,” M.S. thesis (University of California, Berkeley, Berkeley, Calif., 1949).
  13. R. Plonsey, Monograph 281R (Institution of Electrical Engineers, London, 1958).
  14. S. Silver, “Microwave aperture antennas and diffraction theory,” J. Opt. Soc. Am. 52, 131–139 (1962). [CrossRef] [PubMed]
  15. J. Sluiter, M. H. A. J. Herben, O. J. G. Vullers, “Experimental validation of PO/UTD applied to Fresnel-zone plate antennas,” Microwave Opt. Technol. Lett. 9, 111–113 (1995). [CrossRef]
  16. A. Sommerfeld, Optics (Academic, London, 1954).
  17. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116–130 (1962). [CrossRef] [PubMed]
  18. NAG FORTRAN Library, The Numerical Algorithms Group Limited, 1990.
  19. L. C. J. Baggen, J. J. Jeronimus, M. H. A. J. Herben, “The scan performance of the Fresnel-zone plate antenna: a comparison with the parabolic reflector antenna,” Microwave Opt. Technol. Lett. 6, 769–774 (1993). [CrossRef]
  20. M. H. A. J. Herben, R. Middelkoop, F. J. J. Gielkens, “Stationary phase method for far-field computation of defocused reflector antennas,” Electron. Lett. 16, 519–521 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited