OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 1 — Jan. 1, 2000
  • pp: 11–20

Three-dimensional tomographic reconstruction of an absorptive perturbation with diffuse photon density waves

Matthew Braunstein and Robert Y. Levine  »View Author Affiliations


JOSA A, Vol. 17, Issue 1, pp. 11-20 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000011


View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A three-dimensional tomographic reconstruction algorithm for an absorptive perturbation in tissue is derived. The input consists of multiple two-dimensional projected views of tissue that is backilluminated with diffuse photon density waves. The algorithm is based on a generalization of the projection-slice theorem and consists of depth estimation, image deconvolution, filtering, and backprojection. The formalism provides estimates of the number of views necessary to achieve a given spatial resolution in the reconstruction. The algorithm is demonstrated with data simulated to mimic the absorption of a contrast agent in human tissue. The effects of noise and uncertainties in the depth estimate are explored.

© 2000 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5270) Medical optics and biotechnology : Photon density waves
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6960) Medical optics and biotechnology : Tomography

History
Original Manuscript: February 25, 1999
Revised Manuscript: August 20, 1999
Manuscript Accepted: September 2, 1999
Published: January 1, 2000

Citation
Matthew Braunstein and Robert Y. Levine, "Three-dimensional tomographic reconstruction of an absorptive perturbation with diffuse photon density waves," J. Opt. Soc. Am. A 17, 11-20 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-1-11


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, New York, 1983).
  2. S. Webb, The Physics of Three-Dimensional Radiation Therapy, Conformal Radiotherapy, Radiosurgery, and Treatment Planning (Institute of Physics, Bristol, UK, 1993).
  3. M. A. O’Leary, D. Boas, B. Chance, A. Yodh, “Experimental images of heterogeneous turbid media,” Opt. Lett. 20, 426–428 (1985). [CrossRef]
  4. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48 (March), 34–40 (1995) and references therein. [CrossRef]
  5. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997). [CrossRef] [PubMed]
  6. I. W. Kwee, Y. Tanikawa, S. Proskurin, S. R. Arridge, D. T. Delphy, Y. Yamada, “Performance of a null-space image reconstruction algorithm,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 185–196 (1997). [CrossRef]
  7. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997). [CrossRef]
  8. Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “A Born type iterative method for imaging of heterogeneous scattering media and its application to simulated breast tissue,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 232–240 (1997). [CrossRef]
  9. M. V. Klibanov, T. R. Lucas, R. M. Frank, “New imaging algorithm in diffusion tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 272–283 (1997). [CrossRef]
  10. See, for example, B. Chance, R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979, 1–864 (1997).
  11. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. Essenpreis, M. S. Patterson, “Optical properties of phantoms and tissue measured in vivo from 0.9–1.3 µm using spatially resolved diffuse reflectance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 325–334 (1997). [CrossRef]
  12. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef] [PubMed]
  13. W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  14. R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997). [CrossRef]
  15. S. A. Walker, A. E. Cerussi, E. Gratton, “Back-projection image reconstruction using photon density waves in tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 350–357 (1995). [CrossRef]
  16. S. B. Colak, H. Schomberg, G. W. ’t Hooft, M. B. van der Mark, “Optical backprojection tomography in heterogeneous diffusive media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 282–289.
  17. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, “Optical image reconstruction with deconvolution in light diffusing media,” in Photon Migration in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 306–315 (1995). [CrossRef]
  18. A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inverse Probl. 2, 161–183 (1986). [CrossRef]
  19. X. D. Li, T. Durduran, A. G. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997). [CrossRef] [PubMed]
  20. F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986).
  21. S. C. Feng, F.-A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995). [CrossRef]
  22. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994). [CrossRef] [PubMed]
  23. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998). [CrossRef]
  24. L. S. Heuser, F. N. Miller, “Differential macromolecular leakage from the vasculature of tumors,” Cancer 57, 461–464 (1986). [CrossRef] [PubMed]
  25. X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, A. Yodh, “Tumor localization using fluorescence of indocyanine green (ICG) in rat models,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 789–797 (1995). [CrossRef]
  26. M. M. Haglund, D. W. Hochman, A. M. Spence, M. S. Berger, “Enhanced optical imaging of rat gliomas and tumor margins,” Neurosurgery 35, 930–940 (1994). [CrossRef] [PubMed]
  27. N. Weidner, J. P. Semple, W. R. Welch, J. Folkman, “Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma,” N. Eng. J. Med. 324, 1–7 (1991). [CrossRef]
  28. S. P. Gopinath, C. S. Robertson, R. G. Grossman, B. Chance, “Near-infrared spectroscopic localization of intra- cranial hematomas,” J. Neurosurg. 79, 43–47 (1993). [CrossRef] [PubMed]
  29. M. Braunstein, R. W. Chan, R. Y. Levine, “Simulation of dye-enhanced near-IR transillumination imaging of tumors,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 93.
  30. M. Braunstein, R. W. Chan, R. Y. Levine, “Dye-enhanced multispectral transillumination for breast cancer detection: feasibility measurements,” in Proceedings of the IEEE Engineering in Medicine and Biology 19th Annual International Conference (IEEE, New York, 1997), p. 91.
  31. S. Zhou, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light source,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 809–817 (1995). [CrossRef]
  32. T. Carski, Indocyanine Green: History, Chemistry, Pharmacology, Indications, Adverse Reactions, Investigation and Prognosis: An Investigative Brochure (Becton Dickinson, Cockeysville, Md., 1995).
  33. X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissues: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997). [CrossRef]
  34. A. Ishimaru, Wave Propagation and Scattering in Random Media, Volume 1, Single Scattering and Transport Theory (Academic, New York, 1978), pp. 175–185.
  35. R. Y. Levine, E. A. Gregerson, M. M. Urie, “The application of the x-ray transform to 3D conformal radiotherapy,” in Computational Radiology and Imaging: Therapy and Diagnostics, C. Borgers, F. Natterer, eds. (Springer-Verlag, New York, 1999).
  36. B. P. Medoff, “Image reconstruction from limited data: theory and applications in computerized tomography,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, New York, 1987).
  37. M. Braunstein, R. Y. Levine, “Optimum beam configurations in tomographic intensity modulated radiation therapy,” Phys. Med. Biol. (to be published).
  38. W. Neutsch, “Optimal spherical design and numerical integration on the sphere,” J. Comput. Phys. 51, 313–325 (1983). [CrossRef]
  39. R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985). [CrossRef] [PubMed]
  40. G. T. Gullberg, T. F. Budinger, “The use of filtering methods to compensate for constant attenuation in single-photon emission computed tomography,” IEEE Trans. Biomed. Eng. BME-28, 142–157 (1981). [CrossRef]
  41. R. A. Crowther, D. J. DeRosier, A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. London, Ser. A 317, 319–340 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited