OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 1 — Jan. 1, 2000
  • pp: 149–153

Anisotropy and multiple scattering in thick mammalian tissues

Gilbert Jarry, Florence Henry, and Robin Kaiser  »View Author Affiliations

JOSA A, Vol. 17, Issue 1, pp. 149-153 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dual-channel Mach–Zehnder interferometer using heterodyne detection allowed us to measure simultaneously parallel and perpendicular polarization components through various mammalian tissues at a wavelength of λ=633 nm. By contrast with liver tissue, squeletic muscles of a few millimeters thickness exhibit strong anisotropic properties that change the direction of the linear polarization of the light. This rotation of the initial plane of polarization is to be distinguished from the depolarization that is due to the multiple light scattering that goes along with large temporal fluctuations. Complementary photos under linearly polarized light illustrate the behavior difference between liver (isotropic medium) and muscle (anisotropic medium).

© 2000 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(260.1180) Physical optics : Crystal optics
(260.5430) Physical optics : Polarization
(290.4210) Scattering : Multiple scattering

Original Manuscript: January 7, 1999
Revised Manuscript: July 20, 1999
Manuscript Accepted: September 23, 1999
Published: January 1, 2000

Gilbert Jarry, Florence Henry, and Robin Kaiser, "Anisotropy and multiple scattering in thick mammalian tissues," J. Opt. Soc. Am. A 17, 149-153 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995). [CrossRef] [PubMed]
  3. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995). [CrossRef] [PubMed]
  4. J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1060–1062 (1998). [CrossRef]
  5. M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998). [CrossRef]
  6. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997). [CrossRef] [PubMed]
  7. B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996). [CrossRef]
  8. J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992). [CrossRef] [PubMed]
  9. H. Horinaka, K. Hashimoto, K. Wada, Y. Cho, M. Osawa, “Extraction of quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium by polarization modulation,” Opt. Lett. 20, 1501–1503 (1995). [CrossRef] [PubMed]
  10. O. Emile, F. Bretenaker, A. Le Floch, “Rotating polarization imaging in turbid media,” Opt. Lett. 21, 1706–1708 (1996). [CrossRef] [PubMed]
  11. S. G. Demos, R. R. Alfano, “Temporal grating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996). [CrossRef] [PubMed]
  12. S. G. Demos, H. Savage, A. S. Heerdt, S. Shantz, R. R. Alfano, “Polarization preservation gate—a tool for optical mammography,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CMD2, p. 20.
  13. G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, R. Kaiser, “Coherence and polarization of light propagating through scattering media and biological tissues,” Appl. Opt. 37, 7357–7367 (1998). [CrossRef]
  14. J. D. Briers, “Speckle fluctuations and biomedical optics: implications and applications,” Opt. Eng. (Bellingham) 32, 277–283 (1993). [CrossRef]
  15. A. G. Engel, C. Franzini-Armstrong, Myology (McGraw-Hill, New York, 1994).
  16. A. Ishimaru, C. W. Yeh, “Matrix representations of the vector radiative-transfer theory for randomly distributed nonspherical particles,” J. Opt. Soc. Am. A 1, 359–364 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited