OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 1 — Jan. 1, 2000
  • pp: 162–172

Reflectivity properties of an abruptly ended asymmetrical slab waveguide for the case of transverse magnetic modes

G. Latsas, A. B. Manenkov, I. G. Tigelis, and E. Sarri  »View Author Affiliations


JOSA A, Vol. 17, Issue 1, pp. 162-172 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000162


View Full Text Article

Acrobat PDF (237 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We deal with the scattering phenomenon from an abruptly terminated asymmetrical slab waveguide for the case of transverse magnetic (TM) modes. The analysis uses both the integral equation method and the variational technique. The reflection coefficient of the dominant TM guided mode and the far-field radiation pattern are computed, and the discontinuity of the electric field distribution on the core–clad interface is exhibited. Numerical results are presented for several cases of abruptly ended waveguides, including the three-layer slab guide and the structure with variable profile of the refractive index.

© 2000 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.4170) Optical devices : Multilayers
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar
(230.7400) Optical devices : Waveguides, slab
(350.5500) Other areas of optics : Propagation
(350.5610) Other areas of optics : Radiation

Citation
G. Latsas, A. B. Manenkov, I. G. Tigelis, and E. Sarri, "Reflectivity properties of an abruptly ended asymmetrical slab waveguide for the case of transverse magnetic modes," J. Opt. Soc. Am. A 17, 162-172 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-1-162


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49, 273–290 (1970).
  2. G. H. Brooke and M. M. Z. Kharadly, “Step discontinuities on dielectric waveguides,” Electron. Lett. 12, 473–475 (1976).
  3. T. E. Rozzi, “Rigorous analysis of the step discontinuity in a planar dielectric waveguide,” IEEE Trans. Microwave Theory Tech. MTT-26, 738–746 (1978).
  4. K. Morishita, S. Inagaki, and N. Kumagai, “Analysis of discontinuities in dielectric waveguides by means of the least squares boundary residual method,” IEEE Trans. Microwave Theory Tech. MTT-27, 310–315 (1979).
  5. A. Ittipiboon and M. Hamid, “Scattering of surface waves at a slab waveguide discontinuity,” Proc. Inst. Electr. Eng. 126, 798–804 (1979).
  6. H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
  7. K. Uchida and K. Aoki, “Scattering of surface waves on transverse discontinuities in symmetrical three-layer dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-32, 11–19 (1984).
  8. C. M. Angulo, “Diffraction of surface waves by a semi-infinite dielectric slab,” IRE Trans. Antennas Propag. AP-5, 100–109 (1957).
  9. T. Ikegami, “Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers,” IEEE J. Quantum Electron. QE-8, 470–476 (1972).
  10. C. Vassallo, “Reflectivity of multi-dielectric coatings deposited on the end facet of a weakly guiding dielectric slab waveguide,” J. Opt. Soc. Am. A 5, 1918–1928 (1988).
  11. P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “Semiconductor laser facet reflectivities using free-space radiation modes,” IEE Proc. J 140, 49–55 (1993).
  12. Y. P. Chiou and H. C. Chang, “Analysis of optical waveguide discontinuities using Pade approximants,” IEEE Photonics Technol. Lett. 9, 964–966 (1997).
  13. A. B. Manenkov, “Propagation of a surface wave along a dielectric waveguide with an abrupt change of parameters. II: Solution by variational method,” Radiophys. Quantum Electron. 25, 1050–1055 (1982).
  14. A. B. Manenkov, “Step discontinuities in dielectric waveguides (fibres),” Opt. Quantum Electron. 22, 65–76 (1990).
  15. A. B. Manenkov, “Reflection of the surface mode from an abruptly ended W-fibre,” IEE Proc. J 139, 101–104 (1992).
  16. T. J. M. Boyd, I. Moshkun, and I. M. Stephenson, “Radiation losses due to discontinuities in asymmetric three-layer optical waveguides,” Opt. Quantum Electron. 12, 143–158 (1980).
  17. A. B. Manenkov, “Comparison of approximate methods of computing diffraction of waves at diameter discontinuity in a dielectric waveguide,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 28, 743–752 (1985).
  18. C. N. Capsalis, N. K. Uzunoglu, and I. G. Tigelis, “Coupling between two abruptly terminated single-mode optical fibers,” J. Opt. Soc. Am. B 5, 1624–1630 (1988).
  19. C. N. Capsalis and N. K. Uzunoglu, “Coupling between an abruptly terminated optical fiber and a dielectric planar waveguide,” IEEE Trans. Microwave Theory Tech. MTT-35, 1043–1051 (1987).
  20. I. G. Tigelis and A. B. Manenkov, “Scattering from an abruptly terminated asymmetrical slab waveguide,” J. Opt. Soc. Am. A 16, 523–532 (1999).
  21. D. Marcuse, Theory of Dielectric Optical Waveguide, 2nd ed. (Academic, London, 1991), Chap. 1.
  22. L. Lewin, Theory of Waveguides (Newness-Butterworth, London, 1975).
  23. A. B. Manenkov, “Accuracy of approximations for fibre discontinuity analysis,” Opt. Quantum Electron. 23, 81–90 (1991).
  24. A. B. Manenkov, “Eigenmodes expansion in lossy open waveguides (fibres),” Opt. Quantum Electron. 23, 621–632 (1991).
  25. A. B. Manenkov, “Irregular magneto-optical waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 906–910 (1981).
  26. A. D. Vasil’ev and A. B. Manenkov, “Diffraction of the surface wave at the end of the dielectric tube,” Radiophys. Quantum Electron. 30, 320–326 (1987).
  27. T. Y. Na, Computational Methods in Engineering Boundary Value Problems (Academic, New York, 1979).
  28. F. K. Reinhart, I. Hayashi, and M. B. Panish, “Mode reflectivity and waveguide properties of double-heterostructure injection lasers,” J. Appl. Phys. 42, 4466–4479 (1971).
  29. J. K. Butler and J. Zoroofchi, “Radiation fields of GaAs-(AlGa)As injection lasers,” IEEE J. Quantum Electron. QE-10, 809–815 (1974).
  30. J. Buus, “Analytic approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron. QE-17, 2256–2257 (1981).
  31. C. Vassallo, “Antireflection coatings for optical semiconductor amplifiers: justification of a heuristic analysis,” Electron. Lett. 24, 61–62 (1988).
  32. A. G. Failla, G. P. Bava, and I. Montrosset, “Structural design criteria for polarization insensitive semiconductor optical amplifiers,” J. Lightwave Technol. 8, 302–308 (1990).
  33. Q. Liu and W. C. Chew, “Analysis of discontinuities in planar dielectric waveguides: an eigenmode propagation method,” IEEE Trans. Microwave Theory Tech. 39, 422–429 (1991).
  34. J. Meixner, “The behavior of electromagnetic fields at edges,” IEEE Trans. Antennas Propag. AP-20, 442–446 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited