OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 1 — Jan. 1, 2000
  • pp: 173–179

Polaritons in uniaxial materials propagating in hollow cylinders

E. F. Nobre, G. A. Farias, and N. S. Almeida  »View Author Affiliations

JOSA A, Vol. 17, Issue 1, pp. 173-179 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The properties of polaritons propagating in hollow dielectric and magnetic cylinders embedded in an optically inert medium are studied. We pay special attention to those solutions of Maxwell’s equations that give the behavior of the nonradiative modes (confined and localized) propagating in an optically active cylindrical medium. The dispersion relation of surface (localized) modes is obtained. Numerical results are presented for cylinders constituted by magnetic and dielectric materials, such as the uniaxial Heisenberg antiferromagnet MnF2 and the dielectric TiO2.

© 2000 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.5420) Optics at surfaces : Polaritons

Original Manuscript: May 28, 1999
Revised Manuscript: August 23, 1999
Manuscript Accepted: September 1, 1999
Published: January 1, 2000

E. F. Nobre, G. A. Farias, and N. S. Almeida, "Polaritons in uniaxial materials propagating in hollow cylinders," J. Opt. Soc. Am. A 17, 173-179 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Renn, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser guided in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995). [CrossRef] [PubMed]
  2. H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micro-sided hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996). [CrossRef] [PubMed]
  3. Herschel S. Pilloff, “Enhanced atom guiding in metal-coated, hollow-core optical fibers,” Opt. Commun. 143, 25–29 (1997). [CrossRef]
  4. M. M. Auto, G. A. Farias, A. A. Maradudin, “Surface plasmons on films with double periodically corrugated surfaces,” in Electrodynamics of Interfaces and Composite Systems, R. G. Barreira, W. L. Mocham, eds. (World Scientific, Singapore, 1988), pp. 297–313.
  5. G. A. Farias, E. L. Albuquerque, “Polaritons in an n-i-p-i semiconductor superlattice: bulk and surface modes,” Phys. Rev. B 38, 12540–12548 (1988). [CrossRef]
  6. D. L. Mills, E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37, 817–926 (1974). [CrossRef]
  7. R. E. Camley, D. L. Mills, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 26, 1280–1287 (1982). [CrossRef]
  8. V. D. Buchel’nikov, V. G. Shavrov, “New types of surface waves in magnetoelectric antiferromagnets,” JETP 82, 380–385 (1996).
  9. R. L. Stamps, R. E. Camley, “Spin waves in antiferromagnetic thin films and multilayers: surface and interface exchange and entire-cell effective-medium theory,” Phys. Rev. B 54, 15200–15209 (1996). [CrossRef]
  10. M. R. F. Jensen, T. J. Parker, Kamsul Abraha, D. R. Tilley, “Experimental observation of magnetic surface polaritons in FeF2 by attenuated total reflection,” Phys. Rev. Lett. 75, 3756–3759 (1995). [CrossRef] [PubMed]
  11. C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 10, 3038–3051 (1974).
  12. H. Khosravi, D. R. Tilley, R. Loudon, “Surface polaritons in cylindrical optical fibers,” J. Opt. Soc. Am. A 8, 112–122 (1991). [CrossRef]
  13. G. C. Aers, A. D. Boardman, B. V. Paranjape, “Non-radiative surface plasmons-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–66 (1980). [CrossRef]
  14. E. F. Vasconcelos, N. T. Oliveira, G. A. Farias, N. S. Almeida, “Polaritons confined in magnetic wires,” Phys. Rev. B 44, 12621–12623 (1991). [CrossRef]
  15. E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998). [CrossRef]
  16. N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993). [CrossRef]
  17. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  18. M. Abramowitz, L. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  19. V. M. Agranovich, D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).
  20. S. P. Vernon, W. Sanders, A. R. King, “Surface spin-flop and the antiferromagnetic spin-flop transition,” Phys. Rev. B 17, 1460–1461 (1978). [CrossRef]
  21. T. Kurosawa, “Polarization waves in solids,” J. Phys. Soc. Jpn. 16, 1298–1308 (1961). [CrossRef]
  22. F. Gervais, B. Piriou, “Temperature dependence of transverse- and longitudinal-optical modes in TiO2 (rutile),” Phys. Rev. B 10, 1642–1654 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited