OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 10 — Oct. 1, 2000
  • pp: 1703–1712

Aliasing for rapidly counterphasing stimuli: a failure to demonstrate an M-cell sampling limit to resolution

Allison M. McKendrick and Chris A. Johnson  »View Author Affiliations

JOSA A, Vol. 17, Issue 10, pp. 1703-1712 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated whether resolution is sampling limited for stimuli optimized for detection by magnocellular mechanisms. We measured peripheral (15° and 30°) spatial detection and resolution thresholds using 50% and 90% contrast flicker-defined gratings (25 Hz) and 90% contrast counterphasing sinusoidal gratings (25 Hz). Direction-discrimination performance for 90% contrast counterphasing sinusoidal gratings (25 Hz) was measured foveally. Our results indicate that resolution of rapidly counterphasing stimuli is sampling limited in peripheral vision but is consistent with limiting of performance by parvocellular mechanisms. Also, undersampling may not be necessary to account for motion reversals observed with gratings that both drift and flicker.

© 2000 Optical Society of America

OCIS Codes
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6130) Vision, color, and visual optics : Spatial resolution
(330.7310) Vision, color, and visual optics : Vision

Original Manuscript: January 5, 2000
Revised Manuscript: June 22, 2000
Manuscript Accepted: June 22, 2000
Published: October 1, 2000

Allison M. McKendrick and Chris A. Johnson, "Aliasing for rapidly counterphasing stimuli: a failure to demonstrate an M-cell sampling limit to resolution," J. Opt. Soc. Am. A 17, 1703-1712 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985). [CrossRef] [PubMed]
  2. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985). [CrossRef] [PubMed]
  3. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).
  4. L. N. Thibos, D. J. Walsh, F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27, 2193–2197 (1987). [CrossRef] [PubMed]
  5. L. N. Thibos, F. E. Cheney, D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987). [CrossRef] [PubMed]
  6. L. N. Thibos, D. L. Still, A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996). [CrossRef] [PubMed]
  7. R. S. Anderson, “Aliasing in peripheral vision for counterphase gratings,” J. Opt. Soc. Am. A 13, 2288–2293 (1996). [CrossRef]
  8. S. J. Anderson, R. F. Hess, “Post-receptoral under-sampling in normal human peripheral vision,” Vision Res. 30, 1507–1515 (1990). [CrossRef]
  9. S. J. Anderson, N. Drasdo, C. M. Thompson, “Parvocellular neurons limit motion acuity in human peripheral vision,” Proc. R. Soc. London, Ser. B 261, 129–138 (1995). [CrossRef]
  10. S. J. Galvin, D. R. Williams, N. J. Coletta, “The spatial grain of motion perception in human peripheral vision,” Vision Res. 36, 2283–2295 (1996). [CrossRef] [PubMed]
  11. Y.-Z. Wang, L. N. Thibos, A. Bradley, “Undersampling produces non-veridical motion perception, but not necessarily motion reversal, in peripheral vision,” Vision Res. 36, 1737–1744 (1996). [CrossRef] [PubMed]
  12. N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990). [CrossRef] [PubMed]
  13. V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate in the macaque monkey,” Neuroscience 12, 1101–1123 (1984). [CrossRef] [PubMed]
  14. W. H. Merigan, T. Eskin, “Spatio-temporal vision of macaques with severe loss of P beta retinal ganglion cells,” Vision Res. 26, 1751–1761 (1986). [CrossRef] [PubMed]
  15. A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Migraine effects on visual function,” Aust. NZ J. Ophthalmol. 26 (Suppl.), S111–S113 (1998). [CrossRef]
  16. A. Eisner, J. R. Samples, “Profound reductions of flicker sensitivity in the elderly: can glaucoma involve the retina distal to ganglion cells,” Appl. Opt. 30, 2121–2135 (1991). [CrossRef] [PubMed]
  17. A. Eisner, V. D. Stoumbs, M. L. Klein, S. A. Fleming, “Relations between fundus appearance and function,” Invest. Ophthalmol. Visual Sci. 32, 8–20 (1991).
  18. E. J. Casson, C. A. Johnson, L. R. Shapiro, “Longitudinal comparison of temporal-modulation perimetry with white-on-white and blue-on-yellow perimetry in ocular hypertension and early glaucoma,” J. Opt. Soc. Am. A 10, 1792–1806 (1993). [CrossRef]
  19. C. A. Johnson, S. J. Samuels, “Screening for glaucomatous visual field loss with frequency doubling perimetry,” Invest. Ophthalmol. Visual Sci. 38, 413–425 (1997).
  20. M. Wall, K. M. Ketoff, “Random dot motion perimetry in patients with glaucoma and in normal subjects,” Am. J. Ophthalmol. 120, 587–596 (1995). [PubMed]
  21. C. F. Bosworth, P. A. Sample, R. N. Weinreb, “Perimetric motion thresholds are elevated in glaucoma suspects and glaucoma patients,” Vision Res. 37, 1989–1997 (1997). [CrossRef] [PubMed]
  22. K. A. Baez, A. I. McNaught, J. G. Dowler, D. Poinoosawmy, F. W. Fitzke, R. A. Hitchings, “Motion detection threshold and field progression in normal tension glaucoma,” Br. J. Ophthamol. 79, 125–128 (1995). [CrossRef]
  23. W. H. Merigan, J. H. R. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347–352 (1990). [CrossRef]
  24. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,” J. Neurosci. 7, 3416–3468 (1987). [PubMed]
  25. T. Maddess, J. M. Hemmi, A. C. James, “Evidence for spatial aliasing effects in the Y-like cells of the magnocellular visual pathway,” Vision Res. 38, 1843–1859 (1998). [CrossRef] [PubMed]
  26. D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966). [CrossRef]
  27. D. C. Rogers-Ramachandran, V. S. Ramachandran, “Psychophysical evidence for boundary and surface systems in human vision,” Vision Res. 38, 71–77 (1998). [CrossRef] [PubMed]
  28. J. G. Flanagan, D. Williams-Lyn, G. E. Trope, W. Hatch, E. Harrison, “The phantom contour illusion letter test: a new psychophysical test for glaucoma,” in Perimetry Update 1994/95, R. P. Mills, M. Wall, eds. (Kugler, Amsterdam, 1995), pp. 405–409.
  29. N. Barnard, S. G. Crewther, D. P. Crewther, “Development of magnocellular function in good and poor primary school age readers,” Optom. Vision Sci. 75, 62–68 (1998). [CrossRef]
  30. J. Rovamo, V. Virsu, P. Laurinen, L. Hyvarinen, “Resolution of gratings along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666–670 (1982).
  31. J. Nachmias, “On the psychometric function for contrast detection,” Vision Res. 21, 215–223 (1981). [CrossRef] [PubMed]
  32. C. A. Curcio, K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 292, 497–523 (1990). [CrossRef] [PubMed]
  33. S. M. Anstis, “Phi movement as a subtraction process,” Vision Res. 10, 1411–1430 (1970). [CrossRef] [PubMed]
  34. S. M. Anstis, B. J. Rogers, “Illusory reversal of visual depth and movement during changes of contrast,” Vision Res. 15, 957–961 (1975). [CrossRef] [PubMed]
  35. E. H. Adelson, J. R. Bergen, “Spatiotemporal energymodels for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985). [CrossRef] [PubMed]
  36. R. J. Snowden, O. J. Braddick, “The temporal integration and resolution of velocity signals,” Vision Res. 31, 907–914 (1991). [CrossRef] [PubMed]
  37. G. E. Legge, “Sustained and transient mechanisms in human vision: temporal and spatial properties,” Vision Res. 18, 69–81 (1978). [CrossRef] [PubMed]
  38. D. C. Burr, “Temporal summation of moving images by the human visual system,” Proc. R. Soc. London, Ser. B 211, 321–339 (1981). [CrossRef]
  39. W. H. Merigan, J. H. R. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993). [CrossRef] [PubMed]
  40. A. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance, and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994). [CrossRef]
  41. J. H. R. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990). [PubMed]
  42. A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985). [CrossRef] [PubMed]
  43. A. G. Leventhal, K. G. Thompson, D. Liu, Y. Zhou, S. J. Ault, “Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex,” J. Neurosci. 15, 1808–1818 (1995). [PubMed]
  44. B. B. Lee, O. D. Creuzfeldt, A. Elepfandt, “The responses of magno- and parvocellular cells of the monkey’s lateral geniculate body to moving stimuli,” Exp. Brain Res. 35, 547–557 (1979). [CrossRef] [PubMed]
  45. L. N. Thibos, “Acuity perimetry and the sampling theory of visual resolution,” Optom. Vision Sci. 75, 399–406 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited