OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 10 — Oct. 1, 2000
  • pp: 1798–1806

Nonperturbative analysis of cross coupling in corrugated metal films

Zhaoming Zhu and T. G. Brown  »View Author Affiliations


JOSA A, Vol. 17, Issue 10, pp. 1798-1806 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001798


View Full Text Article

Enhanced HTML    Acrobat PDF (740 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There has been a recent renewal of interest in anomalously high energy transfer through otherwise opaque metal film geometries. One of the earliest such systems, that of surface plasmon cross coupling in a sinusoidally corrugated continuous metal film, was studied by Gruhlke et al. [Phys. Rev. Lett. 56, 2838 (1986)]. We show that it is possible to use a nonperturbative method to accurately predict this coupling, and we use this method to analyze both intrinsic coupling in symmetric structures and grating-assisted cross coupling in asymmetric structures.

© 2000 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

History
Original Manuscript: December 1, 1999
Revised Manuscript: June 7, 2000
Manuscript Accepted: June 7, 2000
Published: October 1, 2000

Citation
Zhaoming Zhu and T. G. Brown, "Nonperturbative analysis of cross coupling in corrugated metal films," J. Opt. Soc. Am. A 17, 1798-1806 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-10-1798


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. See, for example, R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980); M. C. Hutley, Diffraction Gratings (Academic, London, 1982).
  2. Y. Kuwamura, M. Fukui, O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983). [CrossRef]
  3. J. C. Quail, J. G. Rako, H. J. Simon, “Long-range surface-plasmon modes in silver and aluminum films,” Opt. Lett. 8, 377–379 (1983). [CrossRef] [PubMed]
  4. A. E. Craig, G. A. Olson, D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983). [CrossRef] [PubMed]
  5. T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31, 2548–2550 (1985). [CrossRef]
  6. T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985). [CrossRef]
  7. S. Dutta Gupta, G. V. Varada, G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331–6335 (1987). [CrossRef]
  8. R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986). [CrossRef] [PubMed]
  9. R. W. Gruhlke, W. R. Holland, D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett. 12, 364–366 (1987). [CrossRef] [PubMed]
  10. M. L. Tuma, R. W. Gruhlke, “Integrated thin film fluorescence NOx sensor: concept,” in Optical Technology in Fluid, Thermal and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 98–105 (1997);M. L. Tuma, R. W. Gruhlke, “Integrated fluorescence sensor,” U.S. Patent5,841,143 (Nov.24, 1998). [CrossRef]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998). [CrossRef]
  12. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  13. U. Schroter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998). [CrossRef]
  14. R. A. Depine, “Backscattering enhancement of light and multiple scattering of surface waves at a randomly varying impedance plane,” J. Opt. Soc. Am. A 9, 609–618 (1992). [CrossRef]
  15. M. L. Tuma, R. W. Gruhlke, T. G. Brown, “Evidence of enhanced fluorescence via cross coupling in an integrated thin-film fluorescence sensor,” in Optical Diagnostics for Fluids/Heat/Combustion and Photomechanics for Solids, S. S. Cha, P. J. Bryanston-Cross, C. R. Merces, eds., Proc. SPIE3783, 339–346 (1999). [CrossRef]
  16. D. Maystre, “Integral methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 3, pp. 63–100.
  17. P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.
  18. J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982). [CrossRef]
  19. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  20. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986). [CrossRef]
  21. M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hansch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992). [CrossRef] [PubMed]
  22. J. C. Tsang, J. R. Kirtley, J. A. Bradley, “Surface-enhanced Raman spectroscopy and surface plasmons,” Phys. Rev. Lett. 43, 772–775 (1979). [CrossRef]
  23. J. C. Quail, J. G. Rako, H. J. Simon, R. T. Deck, “Optical second harmonic generation with long-range surface plasmons,” Phys. Rev. Lett. 50, 1987–1989 (1983). [CrossRef]
  24. P. M. Van den Berg, J. T. Fokkema, “The Rayleigh hypothesis in theory of reflection by a grating,” J. Opt. Soc. Am. 69, 27–31 (1979);T. C. Paulick, “Applicability of the Rayleigh hypothesis to real materials,” Phys. Rev. B 42, 2801–2824 (1990). [CrossRef]
  25. A. Koch, W. Beinstingl, K. Berthold, E. Gornik, “Surface plasmon polariton enhanced light emission from Schottky diodes,” Appl. Phys. Lett. 52, 184–186 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited