OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 10 — Oct. 1, 2000
  • pp: 1807–1818

Analytical solution for the covariance and for the decorrelation time of the angle of arrival of a wave front corrugated by atmospheric turbulence

R. Conan, J. Borgnino, A. Ziad, and F. Martin  »View Author Affiliations

JOSA A, Vol. 17, Issue 10, pp. 1807-1818 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The two-dimensional (2D) spatial covariance of the angle-of-arrival (AA) fluctuations is often used to investigate the properties of wave fronts corrugated by the atmosphere for high-angular-resolution techniques. Theoretical series expansions of this covariance are presented. The fast convergence of these series reduces the calculation time of the covariance done by numerical integration. The 2D covariance is a nonradial function. A physical interpretation of this anisotropy is proposed. The spatiotemporal correlation of the AA is deduced from the covariance assuming the “frozen-flow” hypothesis. The impact of the anisotropy on the evaluation of the number of predominant turbulent layers and on the corresponding winds is investigated, and an analysis of temporal correlations is performed. A simple theoretical approximation of the decorrelation time of the AA is given, which is found to be in agreement with experimental results.

© 2000 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

Original Manuscript: September 30, 1999
Revised Manuscript: May 4, 2000
Manuscript Accepted: May 4, 2000
Published: October 1, 2000

R. Conan, J. Borgnino, A. Ziad, and F. Martin, "Analytical solution for the covariance and for the decorrelation time of the angle of arrival of a wave front corrugated by atmospheric turbulence," J. Opt. Soc. Am. A 17, 1807-1818 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  2. F. Rigaut, G. Rousset, P. Kern, J. Fontanella, J. Gaffard, F. Merkle, P. Lena, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).
  3. J. Borgnino, “Estimation of the spatial coherence outer scale relevant to long baseline interferometry and imaging in optical astronomy,” Appl. Opt. 29, 1863–1865 (1990). [CrossRef] [PubMed]
  4. D. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  5. F. Roddier, J. Gilli, G. Lund, “On the origin of speckle boiling and its effects in stellar speckle interferometry,” J. Opt. (Paris) 13, 263–271 (1982). [CrossRef]
  6. F. Roddier, J. Gilli, J. Vernin, “On the isoplanatic patch size in stellar speckle interferometry,” J. Opt. (Paris) 13, 63–70 (1982). [CrossRef]
  7. D. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8, 1568–1573 (1991). [CrossRef]
  8. V. Voitsekhovich, S. Cuevas, “Adaptive optics and the outer scale of turbulence,” J. Opt. Soc. Am. A 12, 2523–2531 (1995). [CrossRef]
  9. M. Jorgenson, G. Aitken, “Prediction of atmospherically induced wave-front degradations,” Opt. Lett. 17, 466–468 (1992). [CrossRef] [PubMed]
  10. F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Suppl. Ser. 108, 173–180 (1994).
  11. A. Agabi, J. Borgnino, F. Martin, A. Tokovinin, A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. II. First measurements of the wavefront outer scale at the O.C.A.,” Astron. Astrophys. Suppl. Ser. 109, 557–562 (1995).
  12. A. Agabi, “GSM: une expérience dédiée à la mesure des paramètres de cohérence des fronts d’onde en Haute Résolution Angulaire,” Ph.D. thesis (Université de Nice-Sophia Antipolis, Nice, France, 1994).
  13. A. Tokovinin, A. Ziad, F. Martin, R. Avila, J. Borgnino, R. Conan, M. Sarazin, “Wavefront outer scale monitoring at La Silla ,” in Adaptive Optical System Technologies, D. Bonaccini, R. Tyson, eds., Proc. SPIE3353, 1155–1162 (1998). [CrossRef]
  14. J. Strohbehn, S. Clifford, “Polarization and angle-of-arrival fluctuations for a plane wave propagated through a turbulent medium,” IEEE Trans. Antennas Propag. AP-15, 416–422 (1967). [CrossRef]
  15. V. Tatarski, Wave Propagation in a Turbulent Medium (Dover, New York, 1961).
  16. R. Avila, A. Ziad, J. Borgnino, F. Martin, A. Agabi, A. Tokovinin, “Theoretical spatio-temporal analysis of angle of arrival induced by atmospheric turbulence as observed with the Grating Scale Monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997). [CrossRef]
  17. R. Sasiela, J. Shelton, “Mellin transform methods applied to integral evaluation: Taylor series and asymptotic approximations,” J. Math. Phys. (N.Y.) 34, 2572–2617 (1993). [CrossRef]
  18. R. Sasiela, Electromagnetic Wave Propagation in Turbulence. Evaluation and Application of Mellin Transforms (Springer-Verlag, New York, 1994).
  19. G. Tyler, “Analysis of propagation through turbulence: evaluation of an integral involving the product of three Bessel functions,” J. Opt. Soc. Am. A 7, 1218–1223 (1990). [CrossRef]
  20. F. Chassat, “Propagation optique à travers la turbulence atmosphérique. Etude modale de l’anisoplanétisme et application à l’optique adaptative,” Ph.D. thesis (Université Paris XI Orsay, Paris, France, 1992).
  21. B. Ellerbroek, “Including outer scale effects in zonal adaptive optics calculations,” Appl. Opt. 36, 9456–9467 (1997). [CrossRef]
  22. B. Ellerbroek, “Power series evaluation of covariances for turbulence-induced phase distortions including outer scale and servo lag effects,” J. Opt. Soc. Am. A 16, 533–548 (1999). [CrossRef]
  23. F. Roddier, “The effect of atmospheric turbulence in optical astronomy,” in Progress in Optics Vol. XIX, E. Wolf, ed. (Elsevier, New York, 1981).
  24. J. Borgnino, F. Martin, A. Ziad, “Effect of a finite spatial-coherence outer scale on the covariances of angle-of-arrival fluctuations,” Opt. Commun. 91, 267–279 (1992). [CrossRef]
  25. R. Lutomirski, H. Yura, “Wave structure function and mutual coherence function of an optical wave in a turbulent atmosphere,” J. Opt. Soc. Am. 61, 482–486 (1971). [CrossRef]
  26. A. Consortini, L. Ronchi, L. Stefanutti, “Investigation of atmospheric turbulence by narrow laser beams,” Appl. Opt. 9, 2543–2547 (1970). [CrossRef] [PubMed]
  27. R. Conan, A. Ziad, R. Avila, A. Tokovinin, F. Martin, J. Borgnino, “Spatio-temporal analysis of the wave front with the GSM,” in Topical Meeting on Astronomy with Adaptive Optics, Present Results and Future Programs, D. Bonaccini, ed. (European Southern Observatory, Garching, Germany, 1998), pp. 133–142.
  28. A. Ziad, “Estimation des échelles limites de cohérence spatiale des fronts d’onde et optimisation des observations à Haute Résolution Angulaire en Astronomie,” Ph.D. thesis (Université de Nice-Sophia Antipolis, Nice, France, 1993).
  29. F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, “Report on G.S.M. measurement campaign at La Silla,” (European Southern Observatory, Garching, Germany, 1998).
  30. M. Schöck, E. Spillar, “Measuring wind speeds and turbulence with a wave-front sensor,” Opt. Lett. 23, 150–152 (1998). [CrossRef]
  31. R. Avila, J. Vernin, S. Cuevas, “Turbulence profiles with generalized Scidar at San Pedro Màrtir Observatory and isoplanatism studies,” Publ. Astron. Soc. Pac. 110, 1106–1116 (1998). [CrossRef]
  32. E. Gendron, P. Lena, “Single layer atmospheric turbulence demonstrated by adaptive optics observations,” Astrophys. Space Sci. 239, 221–228 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited